
To appear in IEEE Vis 2002

Fast View-Dependent Level-of-Detail Rendering Using Cached Geometry

Joshua Levenberg∗

University of California at Berkeley

(a) (b) (c)
Figure 1: (a) shows an example of a 2049× 2049 height field rendered with aggregate triangles; (b) shows the triangles used to
render (a); (c) is a top view of the view frustum with aggregate triangles in black. The same aggregate triangle is highlighted in
(b) and (c).

ABSTRACT

Level-of-detail rendering is essential for rendering very large, de-
tailed worlds in real-time. Unfortunately, level-of-detail computa-
tions can be expensive, creating a bottleneck at the CPU.

This paper presents the CABTT algorithm, an extension to exist-
ing binary-triangle-tree-based level-of-detail algorithms. Instead of
manipulating triangles, the CABTT algorithm instead operates on
clusters of geometry called aggregate triangles. This reduces CPU
overhead, eliminating a bottleneck common to level-of-detail algo-
rithms. Since aggregate triangles stay fixed over several frames,
they may be cached on the video card. This further reduces CPU
load and fully utilizes the hardware accelerated rendering pipeline
on modern video cards. These improvements result in a fourfold
increase in frame rate over ROAM [7] at high detail levels. Our
implementation renders an approximation of an 8 million triangle
heightfield at 42 frames per second with an maximum error of 1
pixel on consumer hardware.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing Algorithms; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Geometric Al-
gorithms, Object Hierarchies; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Virtual Reality

Keywords: view-dependent mesh, level of detail, height
fields, terrain, binary triangle trees, triangle bintree, multiresolution
meshes, displacement maps, frame-to-frame coherence

1 INTRODUCTION

The goal of geometric level-of-detail rendering algorithms is to ad-
just the geometry of rendered objects for improved detail and per-
formance. Greater realism is achieved by adding geometric detail
to close and important objects. Performance is improved by simpli-
fying objects far from the camera. Level-of-detail algorithms can

∗Research supported by NSF Grant No. DMS-0209617

be essential for realizing very large worlds. They can be used to
control the total amount of geometry in a scene. They can also
help meet fixed performance goals under varying conditions (such
as running on different machines).

To make the best use of available resources, a level-of-detail al-
gorithm should beview-dependent. That is, it should tailor the ren-
dered geometry to the location of the view point, on a frame-by-
frame basis. The algorithm should have fine-grained control over
the geometry so that changes in the level of geometric detail are
not objectionable. These desires tend to be at odds with keeping
geometry static so that it may be cached [23].

Consumer graphics hardware has improved dramatically, dou-
bling in speed every six months and now integrates the full render-
ing pipeline. Recent fine-grained level-of-detail algorithms gener-
ate a new mesh every frame. This requires a great deal of CPU
power and has become a major bottleneck. Consequently, graphics
board manufacturers have in recent years been discouraging the use
of all but the simplest level-of-detail algorithms.

Our goal is to describe a level-of-detail algorithm appropriate
for commercial applications. As such, it needs to be able to take
advantage of video hardware available to consumers now and in
the future. Further, it should be adaptable to give acceptable per-
formance on older machines. A desirable level-of-detail rendering
algorithm would:

• reduce CPU workload without a large increase in the number
of triangles needed to achieve a given error rate,

• be adjustable to take advantage of the relative performance of
the video card and CPU, and

• dynamically adjust the mesh based on the view point in order
to render as quickly as possible without visible errors.

The starting point for meeting these goals is an existing view-
dependent level-of-detail algorithm that outputs triangles. How-
ever, we modify the algorithm to manage collections of geometry
calledaggregate triangles, instead of individual triangles. These
aggregate triangles may then be cached on the video card. This has
several benefits, including:

• improving transformation performance : the graphics sub-
system operates more efficiently in retained mode than imme-
diate mode

To appear in IEEE Vis 2002

• takes advantage of temporal coherence: changes between
frames are localized, and there is little or no processing for
triangles in the unchanged areas

• reducing stalls in the graphics pipeline: cached data can be
processed directly by the video card without delays

In order to realize the benefits of caching, a level-of-detail algo-
rithm must incrementally modify small fractions of the mesh each
frame. Further, the CABTT algorithm needs to include a strat-
egy that ensures adjacent aggregate triangles match up without T-
junctions. This strategy ideally allows an aggregate triangle to use
the same geometry regardless of the detail level of adjacent aggre-
gate triangles.

Binary triangle trees(BTTs, also calledtriangle bintrees[7],
right triangular irregular networks [9], or, in finite elements,
newest-vertex-bisection [24]) are ideally suited to represent meshes
for the CABTT (Cached Aggregated Binary Triangle Trees) algo-
rithm. BTTs use a single shape, the right isosceles triangle, and
have a refinement rule that keeps the mesh crack-free. This sim-
ple structure means a straightforward policy will ensure aggregate
triangles abut without T-junctions. Contrast this with red-green tri-
angulations [1] which have two different refinement rules and use
two different shapes. The ROAM [7] algorithm uses BTTs to incre-
mentally update a mesh from frame to frame.

Previous algorithms have difficulty maintaining interactive
frame rates at high detail levels. The CABTT algorithm not only
scales well, but also balances the workload between the video card
and CPU to achieve good performance on a wide variety of ma-
chines.

2 PAST WORK

There is a very large field of level-of-detail algorithms, but real-time
view-dependent algorithms are relatively recent [23].

There are several level-of-detail techniques applicable to general
meshes [8, 14, 22, 32]. While able to use relatively few triangles to
approximate a mesh, they generally are expensive in time or mem-
ory and do not scale to high detail levels.

Some height field level-of-detail algorithms use Delaunay trian-
gulations [6]. View-dependent progressive meshes have been spe-
cialized to the terrain case [15], allowing a very general class of
meshes, and generally achieve higher accuracy per given triangle
count.

Regular subdivision meshes have been more popular in recent
years. These allow simpler and faster processing at the expense of
an increase in the number of triangles needed to achieve the same
error threshold. Restricted quadtree triangulations [26, 28, 29, 30,
31] were among the first used. They use a similar but somewhat
less flexible class of meshes as BTTs. In particular, the coarsest
mesh representable is finer for restricted quadtrees and they are less
applicable to non-height-field models.

Binary triangle trees have seen a lot of recent research interest
[4, 7, 9, 20, 21, 27]. While typically used to render height fields,
they may be used to render any base mesh with an offset map [7,
24]. Blow [4] gave a method of reducing error metric computation
for high detail meshes. Lindstrom and Pascucci [20] described a
cache-friendly vertex indexing scheme. RUSTiC [27] has triangle
clusters very similar to our aggregate triangles, though with much
greater memory cost than the approach presented here.

We maintain a crack-free mesh using split and merge opera-
tions that incrementally modify the mesh without introducing T-
junctions, as in ROAM [7]. Another approach to maintain a crack-
free mesh [10, 20, 26, 28] adjusts the error metric so that adjacent
triangles in the mesh differ by at most one level of refinement. This
increases the number of triangles rendered but allows rendering to
be done in a single pass and does not require temporal coherence.

A B

C

D

Figure 2: Adjacent triangles are always within one level of detail.

Split

Merge

Figure 3: The split and merge operations

Some previous algorithms deal with blocks of geometry [15, 21],
typically as a starting point for view-dependent simplifications.
RUSTiC [27] uses triangle clusters to reduce CPU bottlenecks,
though it does not perform any caching.

3 REVIEW OF BINARY TRIANGLE
TREES

Binary triangle trees are typically used to represent terrain, given
as a(2n + 1) × (2n + 1) regular grid of height field data. More
generally, BTTs can represent a base mesh with a displacement map
or offset map (such as from a remeshing algorithm [11, 16, 17, 18,
19, 25]). In the case of a height field, the base mesh is a square
divided into two right triangles. At the other end of the spectrum,
thefull meshis the most detailed mesh.

While this paper focuses on BTTs representing height fields, the
techniques are equally applicable to more general meshes.

A binary triangle tree represents a mesh ofbinary trianglessat-
isfying certain rules. Each binary triangle corresponds to a right
isosceles triangle in the grid of offset data. For the specific case of
a height field, the projection of any binary triangle onto a horizon-
tal plane is a right isosceles triangle. The hypotenuse orbaseof the
triangle can only abut either the base of a triangle at the same level
of detail (like triangles A and B in Figure 2) or the leg of a triangle
one level coarser (triangles C and D in Figure 2).

Two triangles that meet base-to-base are called adiamond. A
split divides each triangle of a diamond in two, as shown in Fig-
ure 3. This introduces a vertex in the middle of the base of the orig-
inal two triangles. The inverse of this operation is called amerge.
Also note that one can split a triangle whose base is part of the
boundary of the mesh. Figure 4 shows meshes corresponding to
the first few levels of a binary triangle tree, formed by repeatedly
splitting every triangle. The vertices in the base mesh are associ-
ated with grid positions2n apart to ensure that only vertices on the
regular grid are generated in a2n-level tree.

In order to refine a triangle that is not part of a diamond, we
must split its base neighbor. This operation is called aforce split.
Note that this may recursively force other triangles to split, as in
Figure 5. This operation always terminates, since a split can only
force the split of a coarser triangle.

Rendering is a two-step procedure. First, the BTT from the pre-
vious frame is updated using splits and merges. These updates are
determined by the error metric (see Section 5) and the current lo-
cation of the view point. Second, the BTT is drawn using a simple
recursive algorithm. We can easily perform hierarchical frustum

2

To appear in IEEE Vis 2002

(a) (b) (c)

(d) (e) (f)

Figure 4: Uniform subdivision of a binary triangle.

Figure 5: Splitting a triangle may force other triangles to split.

culling as part of this traversal. We can traverse the BTT with a
Sierpinski space-filling curve, enabling efficient triangle strip or tri-
angle fan rendering.

To avoid lighting-related artifacts as geometric detail is modi-
fied, vertex lighting should be avoided. Per-pixel techniques such
as bump maps [3], normal maps [5], or pixel shaders can be em-
ployed instead. Our implementation uses simple, baked-in lighting
(fixed lighting included in the texture map) to avoid these problems.

4 AGGREGATE TRIANGLES

An aggregate triangle is a collection of triangles that substitutes for
a single binary triangle in a BTT. An aggregate triangle must there-
fore correspond to a right isosceles triangle in the grid of offsets. In
the case of a height field, this means an aggregate triangle projects
to a right isosceles triangle in the horizontal plane.

Instead of constructing a BTT to represent the triangulation of
the terrain, we will construct a much shalloweraggregated BTT
dividing the terrain into aggregate triangles. We will cache the
aggregate triangles, so it is important that the geometry (orsub-
triangulation) of each aggregate triangle remains fixed for several
frames. When an area of an aggregated BTT needs to be refined,
we replace a diamond of aggregate triangles with four aggregate
triangles. This happens just like the split operation described in
Section 3, except with aggregate triangles instead of triangles. The
merge operation is analogous.

The number of triangles in the average sub-triangulation de-
termines the granularity of these operations. Coarser granularity
means fewer aggregate triangles to manage and fewer split and
merge operations, but more data to upload to the video card every
time a split or merge occurs. Also, coarser granularity will increase
the number of triangles needed to meet a particular maximum error
tolerance. By profiling, we can find the level of aggregation that
performs best. This will vary depending on several factors includ-
ing the relative performance of the CPU and video card.

We render an aggregated BTT much like a regular BTT (see Sec-
tion 3). When splitting or merging, we must release the caches of
the aggregate triangles we are replacing and upload the geometry
for the new aggregate triangles. Then, when traversing the BTT, we
simply render the caches associated with any on-screen aggregate
triangle. As an optimization, the caching is performed during the
drawing stage instead of the split and merge stage (see Figure 10).
This avoids wasted work if more than one split or merge happens

Figure 6: An aggregated BTT with uniform sub-triangulations. The
boundaries of the aggregate triangles are bold.

(a) (b)

(c) (d)

Figure 7: Splitting a binary triangle so that its edges have (a) 2
segments, (b) 4 segments, (c) 8 segments, and (d) 16 segments.

in same area of mesh. Even better, we also avoid wasting time up-
loading culled or off-screen geometry.

When creating the sub-triangulations for aggregate triangles, we
must ensure that adjacent aggregate triangles match up along their
common boundaries. We have adopted the simple policy of uni-
formly subdividing all of the boundaries into a fixed number of
segments (defining the aggregation level). This policy ensures con-
tinuity between adjacent aggregate triangles even when they are at
different levels of detail. It isolates sub-triangulations from each
other, so mesh operations are local and fast. Sub-triangulations may
be generated on the fly with a minimal amount of pre-computed
data (contrast with RUSTiC [27] which pre-computes and stores all
sub-triangulations).

The simplest sub-triangulation policy is to uniformly subdivide
each aggregate triangle, as in Figure 6. That is, every aggregate
triangle is subdivided the same way, except that the vertices are dis-
placed according to the offset or displacement map. Typically, ag-
gregate triangles will be subdivided using one of the patterns from
Figure 4 (a), (c), (e).

We may achieve a closer fit to the full mesh with an adaptive
method of sub-triangulation (see Figure 1). The CABTT algorithm
creates a miniature BTT that represents a single aggregate triangle.
It starts with a single binary triangle. It splits the triangle’s bound-
ary until it has the desired number of segments (see Figure 7). We
then apply additional splits to minimize the error metric (described
in Section 5). This continues until we either reach a maximum num-
ber of triangles or we want to perform a split that would cause the
boundary of the aggregate triangle to be further subdivided. This

3

To appear in IEEE Vis 2002

C

t

D

d
P

P
T

i

t

Figure 8: Isosphere error metric notation.

procedure is called SubTriangulation in Figures 9 and 10. Note that
we can discard this BTT as soon as it has been uploaded to the
graphics card.

In our tests, adaptive sub-triangulations reduced the number of
triangles needed to achieve a particular error tolerance by as much
as 50% over uniform sub-triangulations. Since the time to compute
these sub-triangulations is modest, this almost doubles the frame
rate.

In our test case, we achieved the best performance with aggre-
gate triangles containing 16 segments in each edge. On average,
these sub-triangulations would consist of 206 triangles. At this
level of aggregation, at most 20% of these triangles are an over-
head cost introduced by the boundary rule. That is, if we run the
test without restrictions on the boundaries of the aggregate trian-
gles, we achieve the same error tolerance with 20% fewer triangles
(though with cracks in the mesh between adjacent aggregate trian-
gles).

5 ERROR METRICS

We use an error toleranceτ (measured in pixels) to trade quality for
speed. Lowerτ corresponds to higher quality at reduced speed. We
introduce splits anywhere the screen space error is larger thanτ and
merge when that does not introduce errors larger thanτ . After de-
scribing the error metric, we will show how to adapt it to aggregated
BTTs.

To determine when to split a triangle, we use Blow’sisosphere
error metric [4]. Suppose we are given a triangleT with point C
at the midpoint of its base (see Figure 8). We want to compute the
distanceD such that whenever the view point is at leastD away
from C, the rendering ofT will be within τ pixels of the full mesh.
T is split when the view point enters the sphere (an error isosphere)
with centerC and radiusD.

Let K be the screen resolution divided by the tangent of the field
of view.1 Let Pi be a point in the full mesh corresponding to the
point Pt in T (for a height field, these points will be aligned ver-
tically). Let d be the distance from the view point toPi,2 then we
want to ensure thatτ ≥ K |Pt−Pi|

d
. This equation is conserva-

tive — it assumes the triangle is viewed edge-on. We wantD to be
at leastd plus the distance fromC to Pi, so (assuming fixedτ):

D = max
Pi

{
K · |Pt − Pi|

τ
+ |Pi − C|

}
.

Away from the center of the screen, this may underestimate the
error by 10–40% (typically, depending upon the field of view). This

1Assuming the pixels are square,K will be the same if computed from
the horizontal resolution and field of view or from the vertical resolution
and field of view.

2To be conservative, we should usePt when it is farther fromC.

is normally ignored since the center of screen is considered the most
important (a conservative bound is possible). This error metric is
orientation insensitive— it does not depend on the angle at which
the triangle is viewed.

This error metric isnon-monotonic[26], that is, splits may in-
crease the total error. Non-monotonic error metrics produce trian-
gulations with fewer triangles than corresponding monotonic metric
where the error is bounded hierarchically. However, if the mesh
is altered locally, monotonic metrics may be recomputed more
quickly.

In order to meet a target frame rate, we may want to adjustτ .
RecomputingD for every triangle is computationally expensive,
but accurate. However, whenD is large compared to the cluster
width, D is nearly linear in1/τ . If we want to increase the number
of triangles rendered, scalingD by a constant factorα > 1 will
reduceτ by a factor ofα.

Aggregate errormeasures the approximation error of using an
aggregate triangle just as a regular error metric measures the ap-
proximation error of a single triangle. We use the pointC in the
middle of the base edge of the aggregate triangle and compute a
distanceD for the whole triangle. In fact, we could use the equa-
tion for D given above directly, with the understanding thatT is an
aggregate triangle.

An approximation to this is to simply chooseD so that it contains
every isosphere of the sub-triangulation. This is fast enough3 that
several aggregation levels may be profiled at startup to determine
which is optimal.

When constructing an adaptive sub-triangulation for an aggre-
gate triangle, we want to minimizeD. We therefore prioritize the
triangles in the miniature BTT by their distance toC plus the iso-
sphere radius. We may then use a priority queue to efficiently de-
termine which binary triangle to split next.

6 OPTIMIZATIONS

To reduce the number of times per frame that the error metric is
evaluated, we set up queues that track how soon a triangle could
need to split or merge. If a split sphere for a triangle isx units away
from the current camera position, we only need to consider split-
ting the triangle after the camera has moved at leastx units. The
advantage of this technique is that it does not require a heuristic to
estimate how many frames before an error needs to be reevaluated,
as required by ROAM’s [7] dual queues. ROAM, however, supports
control over the number of triangles rendered, while this technique
only controls the maximum error.

Blow [4] uses a hierarchical sphere tree to reduce metric evalua-
tions at higher detail levels. With aggregation, we found our queue
implementation sufficient. The CABTT algorithm required 45 er-
ror metric evaluations per frame, compared to about 2,100 without
aggregation.

To keep the comparison fair, our ROAM implementation in-
cludes additional optimizations. Since queue operations were a
large part of the CPU work in ROAM, we used an optimized bucket
queue instead of a standard STL set. This increased frame rates
by 28%. Instead of sending individual triangles using immediate-
mode OpenGL, we stitched adjacent triangles together into fans,
averaging 3.7 triangles per fan. Fan rendering increased frame rates
by a further 12%. These optimizations gave ROAM an advantage
over the lowest levels of aggregation. Other factors, such as the er-
ror metric, were kept the same between the ROAM and aggregate
triangle implementations.

Pseudo-code for our CABTT implementation is given in Fig-
ures 9 and 10. Please note that triangles that may be split are in-

3Pre-computingD for every aggregate triangle takes less than a tenth of
a second for a257× 257 height field on a 450 MHz Pentium II.

4

To appear in IEEE Vis 2002

procedure Initialize(BaseMesh, InitialCameraPosition ,
AggregationLevel):

compute and store D for each diamond
for each possible splittable Diamond

of aggregate triangles:
Error1 = error of SubTriangulation(Diamond.Triangle1)
Error2 = error of SubTriangulation(Diamond.Triangle2)
AggregateError[Diamond]=Max(Error1 , Error2)

DistanceSoFar = 0
LastPosition =InitialCameraPosition
AggregateTree = BaseMesh
MergeQueue = empty
SplitQueue = [each diamond of BaseMesh]

Figure 9: Initialization for aggregate BTT rendering algorithm.

procedure RenderCABTT(NewCameraPosition):
update DistanceSoFar and LastPosition
while Diamond in MergeQueue / SplitQueue

needs to be reevaluated:
remove Diamond from the queue
recompute distance until merge/split
if negative:

merge/split Diamond (updating queues)
else :

add Diamond back to the queue
for each Triangle in AggregateTree :

if off-screen:
discard caches for Triangle

else :
if Triangle has no cache:

Triangle.Cache =
Cache(SubTriangulation(Triangle))

RenderCache(Triangle.Cache)

Figure 10: Render procedure called once per frame.

dexed by the midpoint of their base edges. Diamonds in the split
and merge queues are indexed by the value ofDistanceSoFar
when they will be reevaluated.

7 RESULTS

Our test machine was a 450 MHz Pentium II with 128 MB of RAM.
It was equipped with a NVIDIA GeForce 2 with 32 MB of video
memory. Our implementation of the algorithm used OpenGL ex-
tensions4 to cache geometry on the video card.

Unless otherwise noted, our test scene was a2049 × 2049
texture-mapped height field. The camera followed a circular path
in the horizontal plane. The error metric was set toK/τ = 600,
corresponding to a maximum error ofτ ≈ 1 pixel at a resolution of
640×480 with a45◦ field of view. Popping, or discontinuities from
changes in the level of detail, was barely detectable in our tests. We
found that window size had only a small effect on average speed.
Results were averaged over the 2400 frames of the test.

Figure 11 summarizes the performance of our implementation.
Observe that both aggregation and caching improve total triangle
throughput (Figure 11(b)), though with diminishing returns at high
aggregation levels. Higher aggregation levels require more trian-
gles to achieve a given error bound, as shown in Figure 11(c).
Caching aggregate triangles with an average of 206 sub-triangles
gave the highest frame rate of 44 frames per second (Figure 11(a)).

4Specifically NVvertexarray range and NVfence. The alternative for
ATI video cards would be ATIvertexarrayobject. OpenGL 2.0 plans to
directly support this form of caching.

fr
am

es
 p

er
 se

co
nd

0

10

20

30
40

50
with cachingno caching

sub-triangles per aggregate
ROAM 4 15 58 20

6 70
1
2,4

23
9,6

70

ful
l m

esh

35
,81

7

(a)

m
ill

io
ns

 o
f t

ria
ng

le
s

pe
r s

ec
on

d

0
3
6
9

12
15

with cachingno caching

sub-triangles per aggregateROAM 4 15 58 20
6 70

1
2,4

23
9,6

70

ful
l m

esh

35
,81

7

(b)

th
ou

sa
nd

s o
f t

ria
ng

le
s

pe
r f

ra
m

e

0
100
200
300
400
500
600
700
800

ROAM 4 15 58 20
6 70

1
2,4

23
9,6

70

ful
l m

esh

sub-triangles per aggregate

1,357

35
,81

7

(c)
Figure 11: Performance of aggregation and caching with a maxi-
mum errorτ of one pixel, a640× 480 window, and a2049× 2049
height field.Trianglesrefers to triangles requested to be drawn af-
ter using a simple field-of-view culling procedure. The columns
of each graph correspond to 1, 2, 4,. . ., 512 edges per side of
the aggregate triangles. Graph (a) demonstrates that peak perfor-
mance occurs with an average of 206 sub-triangles in each ag-
gregate. Graph (b) shows that triangle throughput improves with
greater aggregation. Graph (c) indicates how many triangles are
rendered at each aggregation level.

5

To appear in IEEE Vis 2002

1

5

25

125

625

2049x20491025x1025513x513257x257

fr
am

es
 p

er
 se

co
nd

height field resolution
4097x4097

CABTT
CABTT, caching disabled
full mesh with caching

ROAM
full mesh, no caching

Figure 12: A log-log plot of frame rate versus resolution.

0

10

20

30

40

50
split-only
ROAM
CABTT, caching disabled
CABTT

32x16x8x4x2x1x
flight speed

fr
am

es
 p

er
 se

co
nd

Figure 13: The frame rate at various camera-movement speeds
shows the influence of temporal coherence. For comparison,split-
onlycalculates each frame from scratch, and so is not influenced by
flight speed.

In this case, an average of 1.8 splits/merges of aggregate triangles
were required per frame.

Aggregation also kept the memory requirements modest. Height
field and error data used the most memory (a total of two floats per
vertex in the full mesh). Cached geometry data, taking 12 bytes per
rendered triangle,5 accounted for the remainder. The aggregated
BTTs and aggregate errors used a negligible amount of storage.

Figure 12 demonstrates how well our algorithm scales to higher
resolution meshes. A4097 × 4097 height field renders at interac-
tive rates (24 frames per second) using the CABTT algorithm. As
expected, rendering the full mesh every frame is efficient at lower
resolutions, but not at higher resolutions. On the other hand, the
level-of-detail algorithms (ROAM and CABTT), handle higher res-
olutions more gracefully. Aggregation and caching are significant
improvements to ROAM at all resolutions. The graph only shows
the optimal aggregation level for each resolution. Lower resolution
meshes used a lower aggregation level.

Since the algorithm exploits temporal coherence, frame rates
drop as the camera moves faster. Figure 13 shows how increased
flight speed degrades performance of ROAM-based algorithms.

5Half of this, the vertices, are kept on the video card – ATI cards support
ATI elementarray which allows everything to be stored on the video card.

One way of controlling level of detail without using temporal coher-
ence is to generate a mesh from scratch every frame. For compar-
ison, we implemented a binary triangle tree algorithm that applies
splits to the base mesh every frame, labeledsplit-only in the figure.
The higher flight speeds tested were so fast that the animation did
not appear smooth. Still, the CABTT algorithm performed better
than the algorithm that did not use temporal coherence.

8 RELATED AND FUTURE WORK

There are several optimizations, areas for future research, and re-
lated work to enhance the presented algorithm.

The isosphere error metric was constructed for efficient evalua-
tion. It replaced the orientation sensitive metrics from Lindstrom,
et al. [21] or ROAM [7] since they have been found to be too
CPU intensive [4, 20]. Aggregation would reduce the CPU bur-
den and benefit from fewer triangles to render. However, these
metrics would complicate the split criteria for computing adaptive
sub-triangulations.

ROAM has a dual-queue system that controls the number of tri-
angles rendered and prioritizes the work performed for each frame.
Adapting this system to the CABTT algorithm would allow render-
ing with hard real-time deadlines.

To handle high resolution texturing, we could precompute the
resolution needed for each aggregate triangle. Chunks of texture
data could then be swapped along with the geometry.

A common optimization, used by Lindstrom and Pascucci [20]
for example, is to split rendering and geometry updates into sepa-
rate threads. The implementation for the CABTT algorithm will be
similar. Extra thread synchronization will be needed before freeing
caches, however. Other threads could prefetch or precache texture
or geometry data, based on possible future view points.

To render several instances of a single model, in addition to dis-
placement map, texture map, and base mesh data, we can share
caches between the instances. This requires a data structure that
maps a position in the binary triangle tree to a reference count and
cache identifier. Depending on the situation, it may help to have a
separate cache for the lowest level of detail.

Using a fixed level of aggregation for aggregate triangles pre-
vents very low levels of detail. For faraway objects, alternative
level-of-detail approaches should be employed.

Lindstrom and Pascucci [20] give an indexing scheme appro-
priate for standard binary triangle trees with large data sets. The
access patterns of our algorithm are somewhat different, but their
approach should still work well. An approach tailored to CABTT
would divide data into two sets. Low-resolution data is appropri-
ate for splits, merges, and error metric evaluations. High-resolution
data is needed for generating sub-triangulations.

The geometric error metric given in Section 5 will allow distant
sand dunes to be approximated by a plane. This will reveal the
valleys of the dunes when you should only be able to see the tops.
Some research exists [2, 5, 12] that addresses this problem.

Several papers address automatically converting a model into a
base mesh plus displacement data. MAPS [19] and Kobbelt, et al.
[16] address standard remeshing. Other model representations ap-
propriate for use with our algorithm are:

• normal meshes [11],

• displaced subdivision surfaces of Lee, et al. [18]; combined
with the incremental evaluation scheme of Müller and Have-
mann [25], and

• spline patches with displacement maps by Krishnamurthy and
Levoy [17], and Blow [4].

Once a base mesh has been found, Mitchell [24] has a method of
consistently marking which edges are bases.

6

To appear in IEEE Vis 2002

For models other than height fields, it makes sense to store
culling or occlusion information for each aggregate triangle. De-
pending on the form of the displacement data, it should be straight-
forward to generate a frustum where the entire aggregate triangle is
facing away from the view point.

Currently, the CABTT algorithm is only appropriate for rigid-
body animation. Research into updating the error data for soft-body
animation or other mesh updates would increase the applicability of
the algorithm.

Geomorphing[13], morphing between level of detail changes,
has not been included in our implementation. Geomorphing would
require a significant amount of extra CPU work and bus bandwidth.
On some cards, geomorphing could be implemented in a vertex
shader program for a more modest speed hit.

9 ACKNOWLEDGMENTS

Special thanks to Rebecca Middleton, Ka-Ping Yee, and Georgia
Saltsman for their help revising this paper. We are also grateful to
Jonathan Blow and Thatcher Ulrich for sharing their algorithms and
their insightful correspondence. Finally, the (anonymous) review-
ers of this paper helped direct and improve this paper in numerous
ways.

REFERENCES
[1] Randolph E. Bank, Andrew H. Sherman, and Alan Weiser.

Refinement Algorithms and Data Structures for Regular Local
Mesh Refinement.Scientific Computing, pages 3–17, 1983.

[2] Barry G. Becker and Nelson L. Max. Smooth Transitions be-
tween Bump Rendering Algorithms. InACM SIGGRAPH 93,
volume 27, pages 183–190. ACM, 1993.

[3] Jim Blinn. Simulation of Wrinkled Surfaces. InACM SIG-
GRAPH 78, volume 12, pages 286–292. ACM, 1978.

[4] Jonathan Blow. Terrain Rendering at High Levels of Detail.
In Game Developers’ Conference 2000. CMP, 2000.

[5] Jonathan Cohen, Marc Olano, and Dinesh Manocha.
Appearance-Preserving Simplification. InACM SIGGRAPH
98, pages 115–122. ACM, Jul 1998.

[6] Daniel Cohen-Or and Yishay Levanoni. Temporal Continuity
of Levels of Detail in Delaunay Triangulated Terrain. InIEEE
Visualization ’96, 1996.

[7] Mark Duchaineau, Murray Wolinsky, David E. Sigeti,
Mark C. Miller, Charles Aldrich, and Mark B. Mineev-
Weinstein. ROAMing Terrain: Real-time Optimally Adapting
Meshes. InIEEE Visualization ’97. IEEE, 1997.

[8] Jihad El-Sana and Amitabh Varshney. Generalized View-
Dependent Simplification.Eurographics ‘99, 18(3), 1999.

[9] William Evans, David Kirkpatrick, and Gregg Townsend.
Right Triangular Irregular Networks. Technical Report TR97-
09, University of Arizona, 30 1997.

[10] Thomas Gerstner, Martin Rumpf, and Ulrich Weikard. Er-
ror Indicators for Multilevel Visualization and Computing on
Nested Grids.Computers & Graphics, 24(3):363–373, 2000.

[11] Igor Guskov, Kiril Vidimce, Wim Sweldens, and Peter
Schr̈oder. Normal Meshes. InACM SIGGRAPH 2000, pages
95–102. ACM, Jul 2000.

[12] Wolfgang Heidrich, Katja Daubert, Jan Kautz, and Hans-Peter
Seidel. Illuminating Micro Geometry Based on Precomputed
Visibility. In SIGGRAPH 2000, pages 455–464. ACM, Jul
2000. Published as Computer Graphics Proceedings, Annual
Conference Series, 2000.

[13] Hugues Hoppe. Progressive Meshes. InACM SIGGRAPH
1996, pages 99–108. ACM, 1996.

[14] Hugues Hoppe. View-Dependent Refinement of Progressive
Meshes. InACM SIGGRAPH 1997, pages 189–198, 1997.

[15] Hugues Hoppe. Smooth View-Dependent Level-of-Detail
Control and its Application to Terrain Rendering. InIEEE
Visualization 1998, pages 35–42, Oct 1998.

[16] Leif P. Kobbelt, Jens Vorsatz, Ulf Labsik, and Hans-Peter Sei-
del. A Shrink Wrapping Approach to Remeshing Polygonal
Surfaces.Eurographics ‘99, 18(3), Sep 1999.

[17] Venkat Krishnamurthy and Marc Levoy. Fitting Smooth Sur-
faces to Dense Polygon Meshes. InACM SIGGRAPH 96,
pages 313–324. ACM, Aug 1996.

[18] A. Lee, H. Moreton, and H. Hoppe. Displaced Subdivision
Surfaces. InACM SIGGRAPH 2000, pages 85–94. ACM,
2000.

[19] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and
D. Dobkin. MAPS: Multiresolution Adaptive Parameteriza-
tion of Surfaces. InACM SIGGRAPH 98, pages 95–104.
ACM, 1998.

[20] P. Lindstrom and V. Pascucci. Visualization of Large Terrains
Made Easy. InIEEE Visualization 2001. IEEE, Oct 2001.

[21] Peter Lindstrom, David Koller, William Ribarsky, Larry F.
Hodges, Nick Faust, and Gregory A. Turner. Real-Time, Con-
tinuous Level of Detail Rendering of Height Fields. InACM
SIGGRAPH 96, pages 109–118. ACM, Aug 1996.

[22] D. Luebke and C. Erikson. View-Dependent Simplification of
Arbitrary Polygonal Environments. InSIGGRAPH 97, pages
199–208, 1997.

[23] David Luebke. A Survey of Polygonal Simplification Algo-
rithms. Technical Report TR97-045, University of North Car-
olina at Chapel Hill, 1997.

[24] W. F. Mitchell. Unified Multilevel Adaptive Finite Element
Methods for Elliptic Problems. PhD thesis, U.I. at Urbana CS
Dept., 1988. Report No. UIUCDCS-R-88-1436.

[25] Kerstin Müller and Sven Havemann. Subdivision Surface Tes-
sellation on the Fly using a versatile Mesh Data Structure.Eu-
rographics 2000, 19(3):151–138, Aug 2000.

[26] Renato Pajarola. Large Scale Terrain Visualization Using The
Restricted Quadtree Triangulation. InIEEE Visualization ’98.
IEEE, 1998.

[27] Alex Pomeranz. ROAM Using Triangle Clusters (RUSTiC).
Master’s thesis, U.C. Davis CS Dept., June 2000.

[28] Stefan R̈ottger, Wolfgang Heidrich, Philipp Slusallek, and
Hans-Peter Seidel. Real Time Generation of Continuous Lev-
els of Details for Height Fields. InSixth International Con-
ference in Central Europe on Computer Graphics and Visual-
ization (Winter School on Computer Graphics). WSCG, Feb
1998.

[29] Ron Sivan and Hanan Samet. Algorithms for Constructing
Quadtree Surface Maps. InProc. 5th Int. Symposium on Spa-
tial Data Handling, pages 361–370, August 1992.

[30] Thatcher Ulrich. Continuous LOD Terrain Meshing Us-
ing Adaptive Quadtrees. Gamasutra, Feb 2000. See
http://www.gamasutra.com/features/20000228/ulrich01.htm.

[31] Brian Von Herzen and Alan H. Barr. Accurate Triangula-
tions of Deformed, Intersecting Surfaces. InProceedings SIG-
GRAPH 87, pages 103–110. ACM SIGGRAPH, 1987.

[32] Julie C. Xia and Amitabh Varshney. Dynamic View-
Dependent Simplification for Polygonal Models. InIEEE Vi-
sualization 96, pages 327–334, Oct 1996.

7

