Contouring with C! data (part 2)

Josh Levenberg
February 20, 2003

Intro

Last week I talked about how 2D contouring was like 1D contouring. Today I will go into
more depth about 2D contouring and then say how 3D contouring is like 2D contouring.

To review, let f : [0,1]" — R be defined by a ‘black box’ that answers what the value
or gradient is at any queried point (today, n will be either 2 or 3). We want to construct
an n — 1 manifold (possibly with boundary) within [0,1]" corresponding to f~'(0). The
approach is to first construct a piecewise-cubic approximation to f and then contour each
cubic.

2D

For the 2D case, this breaks down into the following steps:
1. Adaptive meshing

e Using binary triangle trees
e Unfortunately, hard to estimate minimum gradient of f restricted to the contour
f7(0) on a given triangle

2. Spline interpolation

) Splines used are Bézier triangles defined in barycentric coordinates

) Clough-Tocher on triangles, Sibson Split-Square on squares

(c) Solves the degree of freedom problem so we can get C'! continuity
)

Reproduces quadratics exactly; by considering adjacent triangles, can compute a
cross boundary derivative that will reproduce cubics exactly (by ‘minimizing the
C? discontinuity’)

(e) Gives O(h®) (or O(h*) if you reproduce cubics) error for side length h

3. Contouring cubics using [Grandine and Kleine 1997]

1

Define a 2-d direction as “up.”
Define the height function by dot product with the up vector.

Consider the points where the contour is perpendicular to the up vector, these
corespond to critical points of the height function on the contour.

Figure out the points where the contours intersect the boundary. Add these to
the list of critical points.

Figure out the topology at the critical points. Between any two critical values,
the contours are topologically simple.

Use cubic root finding to find a bunch of points on the contours.
Compute the normal and curvature at those points.

Find cubic splines that match [de Boor, Hoéllig, and Sabin 1987] — 6th order
accurate!

Join the splines together according to the topology

An operation used at several points in step 3 is finding all the roots of f;(s) = f(s,t) for
particular values of t. f; is represented as a cubic Bézier spline. Its coefficients are cubic
functions of ¢ that we compute in step 3(a). Given a t, we evaluate the coefficients of f; and
then find its roots using the 1D root finder.

Step 3(c) requires solving an equation like:

f=0
of
ds

for f a cubic in s and t. I use a generalization of the 1D root finder, [Sherbrooke and
Patrikalakis 1993] modified for cubics instead of bicubics. Unfortunately, this only has linear
convergence, but I have a another modification that I think will give quadratic convergence.
Steps 3(f-h) are in a loop to do adaptive sampling. It measures the error at step (h) and
performs further subdivision if the error is too large (this is epsilon 3 below).
Three sources of error:

1. approximation error: from using spline instead of original function:

2 with an adaptive mesh
4 with a regular grid

to scale triangles by %
8 with standard Clough-Tocher
16 if you reproduce cubics

} times as many triangles

to reduce the error by a factor of {

2. root finding error: whenever we execute the operation “find all roots at a given height”:
quadratic convergence so time is O(log —(logerror)). This is the same amount of time
as the simultaneous solver, assuming my modifications give quadratic convergence there

too.

3. spline fitting error: when we construct the splines representing the solution in step 8§,
error is O(h®) where h is stepsize

Algorithmic complexity is approximately:

1
O ((length of solution) * W)

function and gradient evaluations plus:

O ((length of solution) x*

1 error2 verrorl
———=x (log | —log .= | + =
verror verror verror

1 1 3

other work. If you can reproduce cubics, the v/errorl are replaced by v/errorl.

Total error is approx errorl+4error2+-error3, so generally errorl >> error2, error3

Note that I haven’t done careful timing to verify these running time estimates.

Note that there are many bad cases: consider f(z,y) = y(z*+y*—1). Problems happen
whenever the gradient is 0. My solution is to look at the behavior of the function 2% e above
and below the problem area and then extrapolate to the problem point.

3D

Contouring is often used to construct surfaces from 3D data. The most famous algorithm
is marching cubes. This took a regular (cube) grid of data and returned a list of triangles.
Its main idea was pretty simple: create a look-up table of the 256 possible values (which fall
into 14 different classes) for the signs of f at the corners of the cube (note 256 = 2" where
the dimension is n = 3).

Marching cubes, as originally published, suck. It requires a large table that is hard to
generate reliably. It is impractical in higher dimensions (n = 4 requires a table of size
65536). It required a uniform rather than adaptive grid. It was patented. And, it did
not even genrate a mesh without holes. The problem was that the table entries did not
correspond to any globally defined interpolant. As a result, adjacent cubes can disagree on
their common face.

Many papers have been written on how to fix this, but the easiest and simplest is to
use tetrahedrons instead of cubes. Now you only need a 16 entry table (and there are only
3 different cases after symmetry). It scales to higher dimensions (table size is 2"™! and
the only cases are 0,1,...,n positive corners, and the k and n — k cases are symmetric).
Since there is a single linear interpolant for each tetrahedron that agrees on common faces
of adjacent tetrahedrons, consistency is assured. Note that a cube can be divided into 6
tetrahdra without introducing any additional vertices.

Turns out “marching tetrahedra” can be extended to an adaptive grid using, for example,
a generalization of binary triangle trees. Maubach has extended binary triangle trees to

simplicies of higher dimensions. Instead of splitting diamonds consisting of two triangles
sharing an edge, you need to split the wheel of tetrahedra sharing an edge.

There is also generalizations of Clough-Tocher interpolation to tetrahedra, so you can do
piecewise-cubic approximation on this adaptive mesh. It is most natural to represent this
approximation with Bézier tetrahedra.

To contour this approximation, the algorithm:

1.

Picks an ‘up’ direction and height function h(z,y,z) that simply evaluates the dot
product with the up direction

Finds all critical points (that is: where f is zero and the gradient V f is parallel to the
up vector)

If Vf is zero anywhere f is zero, exit with an error

Finds the minimums and maximums of the contour (with respect to h) restricted to
the boundary of the domain. These are added to the list of critical points.

Sorts the critical points into increasing height.
For each critical point (in order):

(a) Find the principle axes of the quadratic approximation to the contour. If the
second derivative of f is zero, we probably need to pick a new up vector and start
over.

(b) Computes the indez of the critical point

(c) If the index is zero, a neighborhood of the critical point is added to the solution-
so-far.

(d) Otherwise some curves are found connecting this critical point to the solution-so-
far

The resulting net of curves captures the topology of the contour, but may need to be
refined in order to reduce the error

Finally, triangular cubic Bézier patches are found that have boundaries in the net of
curves and meet with C! continuity. [J. Peters 1990]

This is best explained with the example of a torus and a lot of pictures. The hardest
part is finding curves contained within the contour in steps 6¢ and 7. Actually, the last step
is pretty hard, but someone already wrote a paper on how to do it.

