
ACCURATE ADAPTIVE CONTOUR FINDING USING C1 DATA

by

JOSHUA LOUIS LEVENBERG

B.A. (Reed College) 1994

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

MATHEMATICS

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor John A. Strain, Chair
Professor James Demmel

Professor James F. O’Brien

Spring 2003

ACCURATE ADAPTIVE CONTOUR FINDING USING C1 DATA

Copyright 2003

by

JOSHUA LOUIS LEVENBERG

1

Abstract

ACCURATE ADAPTIVE CONTOUR FINDING USING C1 DATA

by

JOSHUA LOUIS LEVENBERG

Doctor of Philosophy in MATHEMATICS

University of California at Berkeley

Professor John A. Strain, Chair

This thesis develops accurate adaptive computational methods for finding the contours of C1 func-

tions of one, two, and three variables. The main tools employed are adaptive meshes, piecewise-cubic

interpolation with Bézier splines, and robust zero-finding algorithms. G2 cubic spline contours are

produced in the two-variable case. We also introduce a simple new C1 natural neighbor interpolant.

Professor John A. Strain
Dissertation Committee Chair

2

i

To my family and friends,

who supported me through this whole process.

ii

Contents

List of Figures iv

List of Tables vi

List of Algorithms vii

1 Introduction 1
1.1 Contributions . 3
1.2 Definitions and Notation . 4

2 Finding the roots of a C1 function of one real variable 6
2.1 General approach . 6
2.2 Bézier splines . 6
2.3 Adaptive cubic interpolation . 12
2.4 Error model . 12
2.5 An alternate algorithm . 16
2.6 Finding the zeros of piecewise-cubic functions of one real variable 19

2.6.1 A spline root finder using convex hulls . 20
2.6.2 Robustness . 21
2.6.3 Deflation in the Bézier basis . 21
2.6.4 Convex hull intersection . 23

2.7 Results . 25

3 Finding the contours of a C1 function of two real variables 27
3.1 Previous work . 27
3.2 Bézier patches . 30
3.3 Mesh refinement . 33
3.4 Interpolation . 39

3.4.1 Nine Parameter Interpolant . 39
3.4.2 C1 Hermite Interpolant . 39
3.4.3 Clough-Tocher Interpolant . 39
3.4.4 Powell-Sabin Interpolants . 42
3.4.5 Triangle-Square interpolant . 42

3.5 Error model . 43
3.6 Finding the zero set of cubic functions of two real variables 51

3.6.1 Modified Grandine-Klein contouring . 53
3.6.2 The complete algorithm . 55

3.7 A modified Sherbrooke-Patrikalakis equation solver 64
3.7.1 Convex hull . 66

iii

3.7.2 Quadratic convergence . 66
3.7.3 Subdivision . 68

3.8 Jigsaw Puzzle . 70
3.9 Results . 72

4 Contouring C1 functions of three variables 80
4.1 Previous work . 80
4.2 Adaptive sampling and meshing . 84
4.3 Interpolation . 89
4.4 Finding the contour surface . 89

4.4.1 Morse Theory . 90
4.4.2 Applied Morse Theory . 92
4.4.3 Steepest descent . 97
4.4.4 Skeleton refinement . 100
4.4.5 Filling in the Skeleton . 101
4.4.6 The 3D contouring algorithm . 101

4.5 Extension to surface intersection . 103

5 Scattered data interpolation 105
5.1 Finite element interpolation . 105
5.2 Radial basis functions . 107
5.3 Natural neighbor interpolation . 107
5.4 New Natural Neighbor Interpolant . 110
5.5 Gradient estimation . 120

6 Conclusions and future work 122
6.1 Future work . 122

6.1.1 Robust topology . 122
6.1.2 Minimizing C2 discontinuity . 123
6.1.3 Contouring piecewise-C1 functions . 123

6.2 Contributions . 124
6.3 Conclusion . 125

Bibliography 126

iv

List of Figures

1.1 A topographical map . 2

2.1 The cubic Bézier basis functons . 8
2.2 de Casteljau evaluation of a cubic Bézier spline . 10
2.3 Maximum error for C2 functions . 13
2.4 Basis for the error for polynomial f . 14
2.5 Interpolation error and slope determine the distance between the roots of f̃ and f . . 14
2.6 Worst case error when the slope is zero . 16
2.7 Finding the intersection of the convex hull of four vertical line segments with the x-axis. 24
2.8 The test function f(x) = sin(100x2)/(10x) . 26
2.9 Number of function evaluations needed to achieve the given maximum error 26

3.1 Data flow between modules of the 2D contouring algorithm 28
3.2 Gridless methods extrapolate to find the contour . 29
3.3 The control mesh for rectangular and triangular Bézier spline patches 31
3.4 Basis functions for triangular Bézier patches, with the corresponding control polygon. 32
3.5 Evaluation and subdivision of a triangular Bézier patch may be performed using the

de Casteljau operator . 34
3.6 A refinement scheme should avoid creating hanging nodes/T-junctions. 35
3.7 A diamond is two binary triangles oriented base-to-base. 36
3.8 The split operation on binary triangle trees . 37
3.9 Adjacent triangles are always within one level of refinement. 37
3.10 Splitting a triangle may force other triangles to split. 38
3.11 Uniform subdivision of a binary triangle . 38
3.12 The Clough-Tocher interpolant divides triangular elements into three micro-elements. 40
3.13 Basis functions for Clough-Tocher interpoloation. 41
3.14 The Triangle-Square interpolant divides square elements into four triangular micro-

elements. 43
3.15 Basis functions for Sibson split-square interpoloation. 44
3.16 Error in approximating x3 with Clough-Tocher interpolation 45
3.17 Error in approximating 3x2y with Clough-Tocher interpolation 47
3.18 Error in approximating x2y with Sibson’s split-square interpolation 48
3.19 Estimating the average gradient magnitude . 51
3.20 The 8-component zero set of a bicubic function . 52
3.21 The modified Grandine-Klein algorithm for contouring a spline patch 54
3.22 Errors in finding a minimum or maximum can lead to additional roots. 59
3.23 Using the osculating circle to see if two roots are from the same contour. 59
3.24 Resolution of an Unknown transition point. 61
3.25 Bound on the largest solution for the interpolating spline 63

v

3.26 The PPI algorithm projects the control polygon onto two perpendicular planes. . . . 64
3.27 Given the convex-hull intersections of the two functions, restrict to where they are

both potentially zero. 65
3.28 The modified Sherbrooke-Patrikalakis solver may find solutions outside of the original

triangular domain . 66
3.29 The PPI algorithm can converge slowly even for linear functions 66
3.30 Projecting onto the gradient direction can provide much quicker convergence. 67
3.31 f◦ has a single circular contour . 73
3.32 Performance of linear and cubic contouring of f◦ . 74
3.33 fb contoured using the Linear, the Sampling, and the Cubic Precision methods . . . 76
3.34 Performance of linear and cubic contouring of fb . 77
3.35 fθ contoured using the Linear, the Max Derivative, and the Cubic Precision methods 78
3.36 Performance of linear and cubic contouring of fθ . 79

4.1 Two possible ways for marching cubes to contour the interior of the square 81
4.2 The ambiguity of contouring the faces of the cube can lead to meshes with gaps. . . 81
4.3 A simplicial complex for the cube consisting of 6 tetrahedra 85
4.4 In 3D, the tetrahedra sharing an edge form a wheel. 86
4.5 The contour surface is a torus . 90
4.6 The torus divided according to the height function 91
4.7 The torus divided into handles . 92
4.8 Quadratic approximations to the critical points of the torus 95
4.9 Steepest descent applied to the four critical points of the torus 96
4.10 Peters’ patch generation algorithm fills n-sided holes with n triangular patches. . . . 102

5.1 The Voronoi tessellation is dual to the Delaunay triangulation 106
5.2 Evaluating the original natural neighbor interpolant 108
5.3 The Prussian helmet effect of mixing first-order approximations 109
5.4 The basis functions for the new natural neighbor interpolant 113
5.5 Franke’s test function, F(x, y) . 114
5.6 The 33 sample sites include the corner points and points on the boundary. 114
5.7 The C0 natural neighbor interpolant has corners at the data sites 115
5.8 The C1 natural neighbor interpolant has spherical quadratic precision 116
5.9 NJ with J(t) = t2 . 117
5.10 NJ with J(t) = 3t2 − 2t3 . 118
5.11 NJ2 with the mS

i (x) mixing function. 119

6.1 Small changes to a function at a saddle point can change the contour topology. . . . 122

vi

List of Tables

3.1 Approximate asymptotic performance of contouring f◦ with linear and cubic interpo-
lation. 72

3.2 Parameters for the contours of fθ in Figure 3.35 . 75

5.1 Error between various natural neighbor interpolants and F 113

vii

List of Algorithms

2.1 Overall contouring algorithm . 7

2.2 Alternate contouring algorithm without derivative bounds 17

2.3 Roots of a spline in 1D. 20

3.1 Contouring a cubic Bézier triangle in 2D. 56

3.2 Routine for adding a triangle to the jigsaw puzzle. 71

4.1 An n-dimensional simplex bisection algorithm . 86

4.2 Algorithm for finding the neighborhood of an edge to be bisected 87

4.3 An n-dimensional simplex refinement algorithm . 88

viii

Acknowledgements

I want to thank John Strain without whom this would never had been possible. I would also like

thank Rebecca Middleton who very patiently helped me through the entire process.

1

Chapter 1

Introduction

Every summer, my family goes backpacking in the Sierra Nevada mountains. Since we

do this only once a year, our main concern is how strenuous the hike will be. So we study our

topographical (or topo) map (Figure 1.1) to see how many altitude lines we are going to cross on

our chosen trail. A topo map is a contour map that shows lines of constant altitude. Every line

crossed corresponds to an elevation gain or loss of forty feet. Many lines close together indicate that

an area is very steep.

More generally, contour maps show lines of constant value, or level sets, for some function.

In the case of a topo map, the function takes in latitude and longitude and outputs altitude. If

we think of latitude as x, and longitude as y, and altitude as z, we have the equation z = f(x, y).

Given any particular altitude z, we have one equation with two variables. The solutions will be

curves in the xy-plane. Finding these curves is harder than solving problems with the same number

of equations as variables, where there are generally a finite number of discrete solutions.

For a function f of three variables, the contours will be surfaces, or isosurfaces, in three

dimensions. For a vector-valued function of three variables, the contours will be space curves or

points, depending on the dimension of the vector. The general problem of finding these level sets of

functions is called contouring.

Contouring algorithms are tools that can be used to solve problems in many different

domains. 3D contours are used to visualize 3D flows [108]. Contouring is used to solve computer

aided design and modeling problems that arise in engineering and manufacturing at Boeing [48].

Contouring solves a wide variety of geometric problems [34]:

• Finding ray-traps (or bouncing billiard-ball paths); a sequence of n points on n curves that a

light ray or billiard ball will bounce between forever.

• Determining the locus of points equidistant from three curves in a plane.

• Finding surface-surface bisectors representing the safest paths between dangerous regions.

2

Figure 1.1: Part of a topographical map with contour lines every forty feet of altitude [101]

Often f is the (signed) distance to some surface: contouring then extracts the surface from

the function. For example, the problem of simulating moving interfaces between fluid phases is

complicated by changing topology. Evolving the distance function to the interface instead of the

interface itself handles topological changes without surgery [21, 22, 69, 88, 100].

Distance functions also represent surfaces passing through a large collection of points [20],

as in reconstructing a 3D sculpture from laser range-finding data. The Digital Michelangelo Project

collects such data for various buildings and sculptures, most notably the David.

This thesis addresses the problem of contouring when:

• it is expensive to evaluate the function f ,

• we can evaluate the function and its gradient ∇f at arbitrary points or estimate it reliably,

• we want to get to the correct answer within a specified tolerance, and

• the contours should not cross.

Some applications also require accurate tangent or curvature information along contours. Chapter 5

addresses interpolation schemes that build a contourable f from a fixed number of sample values.

3

1.1 Contributions

The focus of this thesis is on creating a contouring technique that addresses the above concerns and

has the following collection of desirable properties:

• Accuracy: very small error bounds are achieved efficiently

• Adaptive: concentrates computational effort near the contour

• Scalable: all interpolation and contouring employs only local data

• Smooth: contours are continuous splines that do not cross and have no corners or cusps; can

directly evaluate tangent and curvature of contour

• Robust: degenerate cases are carefully resolved to yield a consistent topology

• Modular: can substitute different interpolation, error estimation, adaptive meshes, etc.

• Stable: uses a spline basis throughout, avoiding (numerically unstable) conversion to the power

basis [26, 38, 39]

• Freely usable: this technique is not patented, unlike Marching Cubes [23, 25]

The technique separates naturally into three stages:

1. Sample the function f using an adaptive mesh.

2. Refine the mesh until a cubic spline approximation f̃ is sufficiently close to f .

3. Use spline techniques to contour f̃ .

Chapters 2, 3, and 4 describe contouring functions of 1, 2, and 3 variables respectively.

Using uniform sampling and linear interpolation, we would expect O(1/
√

n) error with n

samples in 2D. With adaptive sampling, we can get O(1/n) error. With cubic interpolation, we can

get O(1/n2) or O(1/n3) error. Cubic interpolation also provides valuable curvature information and

tangent data.

Greater accuracy can be obtained, though with reduced speed and scalability, using global

approaches to interpolation. This is helpful when additional function values are costly or impossible

to obtain. Chapter 5 contains a summary of some existing global interpolation techniques and

presents a new interpolant which may be used in that situation.

Alternatively, we can get greater speed with much less accuracy using adaptive linear

interpolation [17, 56, 100, 107, 115]. Using the modular framework, linear interpolation is compared

to cubic interpolation in Chapters 2 and 3.

It has been observed [26, 38, 39] that polynomial operations performed in the Bernstein-

Bézier basis are more numerically stable than in the power basis. Furthermore, conversion from the

4

power basis to the Bernstein-Bézier basis is ill-conditioned : this conversion magnifies small errors

in the input [30]. The algorithms and implementations described in this dissertation all work in the

Bernstein-Bézier basis from the start, and perform no conversions.

1.2 Definitions and Notation

A function f is said to be Ck if the kth derivative of f is defined and continuous on the domain of

f . For example, a C0 function is continuous, and a C1 function has a continuous derivative.

The following conventions will be used below:

f is the function to be contoured.

f̃ is the current approximation of f .

D is the domain of f .

C is the contour, f−1(0) = {x ∈ D|f(x) = 0}.

ε is an error tolerance for the contour.(
n
r

)
is the number of ways of choosing r items from n, given by n!

(n−r)!r! .(
n

r1 r2 r3

)
is the number of ways of dividing n items into three groups with sizes r1, r2, and r3, given

by n!
r1!r2!r3!

. Here r1 + r2 + r3 = n.

Bd
i (t) is the degree-d Bernstein-Bézier basis function of one variable, defined in Section 2.2.

Bd
ijk(s, t, u) is a triangular Bézier basis function in 2D, defined in Section 3.2.

c(t) is a curve, parametrized by a function c : [0, 1] → Rn where n is 2 or 3.

~d will represent a unit direction vector in R3.

Algorithms are presented in a pseudocode employing the following conventions:

• Comments begin with a #.

• [a, . . . , z] represents a list.

• Sets are enclosed in curly brackets {. . .}.

• If a is a list, a[n] is used to get the nth element.

• Functions and procedures are written in SmallCaps.

• Variables are written in italics.

• Control keywords are written in bold face.

5

• Blocks of code are indicated by indentation.

• The equal sign (=) is used for assignment, the keyword “is” is used to test for equality.

• Named members of a variable are accessed using a period. For example, Algorithm 3.1 has a

variable called State that contains several variables and functions. The member functions may

read or modify the member variables.

An algorithm is either a function, if it returns a value, or a procedure, if it does not. The other

keywords that control the flow of execution are:

while condition:

indented statements

executes the indented statements if the condition is true. After the indented statements have been

executed, the condition is tested again and the process repeats. continue interrupts the indented

statements to start over testing the condition. break exits this loop.

for variable in list or set :

indented statements

sets variable to each element of the list or set, executing the indented statements each time. continue

advances to the next element and continues with the indented statements. break exits the loop.

if condition 1 :

indented statements 1

else if condition 2 :

indented statements 2

else:

else statements

executes the first set of statements if the first condition is true, the second set of statements if the

second condition is true, and the else statements if none of the conditions are true. Note that the

else if and else clauses are optional.

Finally, return exits from a procedure or function. The return value of a function follows

the keyword return.

6

Chapter 2

Finding the roots of a C1 function

of one real variable

2.1 General approach

The overall algorithm for contouring 1D, 2D, and 3D functions is shown in Algorithm 2.1. It is a

modular algorithm that uses a specified adaptive mesh, interpolant, and error model (which depends

on the interpolant).

The algorithm consists of two main stages: computing an approximation f̃ to f , and

contouring f̃ . In the first stage, it discards regions where f has no zeros and evaluates f where zeros

are likely. The second stage uses the specific form of f̃ .

For functions of one variable, interpolation and adaptive sampling is described in Sec-

tion 2.3, the error model and safe radius computations are described in Section 2.4, and the con-

touring of f̃ is described in Section 2.6.

2.2 Bézier splines

In the one-dimensional case, we use Bézier splines to represent f̃ . Bézier splines represent piecewise

cubic functions using a sequence of control points. The geometric relationship between the points

and the function is extremely useful.

Bézier splines were independently developed by P. de Casteljau [29] and P. Bézier [16].

De Casteljau employed these splines in the computer-aided design of automobiles. Although de

Casteljau discovered them first, Bézier was the first to publish, so they carry his name.

A univariate polynomial of degree d is specified by d + 1 degrees of freedom. We represent

such a polynomial by taking a linear combination of basis functions. For example, in the power basis

the basis functions are 1, t, t2, . . . , td. A polynomial is determined by the coefficients ci of the basis

7

procedure Contour(Mesh, Function, Interpolant, ErrorModel, ε1, ε2):

while Mesh.WorkingSet not empty:

Element = Mesh.WorkingSet.Pop()

SafeRegion = unioni Ball(Element.Vertices[i].Position, Element.Vertices[i].SafeRadius)

if Element inside SafeRegion:

Mesh.DiscardElement(Element)

continue

for Vertex in Element.Vertices:

ifVertex.Value not set:

Function.EvaluateValue(Vertex)

if Element.Diameter ≤ ε1+ε2:

Mesh.ResultSet.Push(Element)

else if ErrorModel.StoppingCriteria(Element,

ErrorModel.MaxError(Element), ε1):

Mesh.ResultSet.Push(Element)

else if Element.Vertices.Value signs differ:

Mesh.Refine(Element)

else:

Mesh.IntializeCenterVertex(Element)

Radius = Mesh.RadiusToCoverElement(Element)

Element.Center.SafeRadius = Function.SafeRadius(Element.Center, Radius)

if Element.Center.SafeRadius ≥ Radius:

Mesh.DiscardElement(Element)

else:

Mesh.Refine(Element)

return Interpolant.ContourElements(Mesh.ResultSet, ε2)

Algorithm 2.1: Overall contouring algorithm

8

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

B3
0(x)

B3
1(x)

B3
2(x)

B3
3(x)

Figure 2.1: The cubic Bézier basis functons

functions:

c0 · 1 + c1 · t + . . . + cd · td .

The basis for Bézier splines is the Bernstein polynomials [40], defined on [0, 1] by (Fig-

ure 2.1):

Bd
i (t) =

(
d

i

)
(1− t)d−iti for 0 ≤ i ≤ d .

Given d + 1 numbers c0, . . . , cd, called Bézier ordinates, we get the polynomial

c(t) =
d∑

i=0

ciB
d
i (t) =

d∑
i=0

ci

(
d

i

)
(1− t)d−iti .

The basis functions give Bézier splines several desirable properties:

1. Only one of the basis functions is nonzero at the left or right endpoint:

Bd
i (0) =

{
1 if i = 0

0 otherwise

Bd
i (1) =

{
1 if i = d

0 otherwise

This implies that Bézier splines interpolate between the first and last ordinates: c(0) = c0 and

c(1) = cd.

2. The Bernstein polynomials sum to one:

d∑
i=0

Bd
i (t) =

d∑
i=0

(
d

i

)
(1− t)d−iti = ((1− t) + t)d = 1 for all t

9

This implies that the Bézier splines are affine invariant. That means that scaling and trans-

lating each coordinate is equivalent to scaling and translating the function:

d∑
i=0

(a · ci + b) Bd
i (t) =

(
d∑

i=0

a · ci ·Bd
i (t)

)
+

d∑
i=0

b ·Bd
i (t)

= a

(
d∑

i=0

ci ·Bd
i (t)

)
+ b

(
d∑

i=0

Bd
i (t)

)

= a

(
d∑

i=0

ci ·Bd
i (t)

)
+ b

3. The Bernstein polynomials are nonnegative on the interval [0, 1]. Since they also sum to one,

for every 0 ≤ t ≤ 1, c(t) is a convex linear combination of the coefficients ci. This implies

c([0, 1]) lies in [mini ci,maxi ci], so c has no roots on [0, 1] when all of the ci have the same

sign.

4. If we define Bd
−1(t) = Bd

d+1(t) = 0, then the Bernstein polynomials satisfy the recurrence

relation:

Bd
i (t) = (1− t)Bd−1

i (t) + tBd−1
i−1 (t) for 0 ≤ i ≤ d.

Substituting into the expression for c:

c(t) =
d∑

i=0

ciB
d
i (t)

=
d∑

i=0

ci

[
(1− t)Bd−1

i (t) + tBd−1
i−1 (t)

]
=

d−1∑
i=0

(ci(1− t) + ci+1t) Bd−1
i (t)

gives a recursive procedure, called de Casteljau evaluation, that evaluates c at any given t.

The only operation it uses is linear interpolation, as shown in Figure 2.2:

d0 = (1− t)c0 + tc1

d1 = (1− t)c1 + tc2

d2 = (1− t)c2 + tc3

d3 = (1− t)d0 + td1

d4 = (1− t)d1 + td2

d5 = (1− t)d3 + td4

De Casteljau evaluation is more numerically stable than evaluation in the power basis [26, 38,

39].

10

c3

d5 = c
(

1
3

)

c1

c(t)

d4

d0

d2
d3

c0

d1

c2

Figure 2.2: de Casteljau evaluation of a cubic (d = 3) Bézier spline at t = 1
3 .

Evaluating c(t) using de Casteljau’s algorithm requires O(d2) operations per evaluation

point t. Farouki and Rajan [39] give substitutions to transform a Bézier spline into a polynomial

that may be evaluated using Horner’s method.

Bézier splines can also be used to represent space-curves c(t) = [0, 1] → Rn. In this case,

the coefficients ci are vectors in Rn, called coordinates. The term control points refers to either

coordinates or ordinates. If we connect these adjacent coordinates ci, ci+1 with line segments, we

get the Bézier polygon for the spline. Since c(t) is a convex linear combination of the control points

ci, c([0, 1]) lies in the convex hull of its control polygon. An even stronger statement is that Bézier

splines have the variation diminishing property [40]. That is, no hyper plane has more intersections

with the curve than with the Bézier polygon.

Given ordinates for a Bézier spline, ci ∈ R, we can construct its graph g(t) = (t, c(t)) :

[0, 1] → R2 as a Bézier spline with coordinates gi =
(

i
d , ci

)
. Applying the convex hull property

to the graph of c gives more detailed information (such as where c could have roots) than to the

ordinates ci alone.

The derivative of a degree d polynomial is a degree d− 1 polynomial. The derivative of a

degree d Bézier spline can be easily represented as a degree d−1 Bézier spline: the derivative of c(t)

has control points c′i = d (ci+1 − ci):

c′(t) =
d∑

i=0

ci
d

dt
Bd

i (t)

=
d∑

i=0

ci

(
d

i

)
d

dt

(
(1− t)d−iti

)

11

=
d−1∑
i=0

(
ci

(
d

i

)
(d− i)(−1)(1− t)d−i−1ti

)

+
d∑

i=1

(
ci

(
d

i

)
i(1− t)d−iti−1

)

=
d−1∑
i=0

[
−ci

(
d

i

)
(d− i)(1− t)d−i−1ti + ci+1

(
d

i + 1

)
(i + 1)(1− t)d−(i+1)ti

]

=
d−1∑
i=0

[
−ci

(
d

i

)
(d− i) + ci+1

(
d

i + 1

)
(i + 1)

]
(1− t)d−i−1ti

=
d−1∑
i=0

[
−ci

d!(d− i)
i!(d− i)!

+ ci+1
d!(i + 1)

(i + 1)!(d− i− 1)!

]
(1− t)d−i−1ti

=
d−1∑
i=0

[
−cid

(d− 1)!
i!(d− i− 1)!

+ ci+1d
(d− 1)!

i!(d− i− 1)!

]
(1− t)d−i−1ti

=
d−1∑
i=0

d (ci+1 − ci)
(

d− 1
i

)
(1− t)d−1−iti

In particular, c′(0) = d(c1 − c0) and c′(1) = d(cd − cd−1). Therefore the line segments c0c1 and

cd−1cd are tangent to the curve c(t) at t = 0 and t = 1 respectively.

Splines are typically used to represent piecewise-polynomial curves, as in:

p(t) =

{
a(t) if 0 ≤ t ≤ 1

b(t− 1) if 1 ≤ t ≤ 2

For p to be continuous, we need a(1) = b(0) or ad = b0. For p to be C1, we need ad = b0 and:

a′(1) = b′(0)

d (ad − ad−1) = d (b1 − b0)

ad − ad−1 = b1 − b0

This type of continuity is referred to as parametric continuity since it depends on the parameteriza-

tion of the curve.

Visual continuity or geometric continuity measures how smooth the curve is ignoring pa-

rameterization. A continuous curve is said to be G1 if its unit tangent vector varies continuously.

The function p(t) above is G1 continuous if ad = b0 (that is, p is continuous) and ad−1, b0, and b1

are collinear. G2 continuity requires continuous curvature

K(t) =
|c′′(t)× c′(t)|

|c′(t)|3
.

Subdivision of a Bézier spline divides a spline c(t) into two pieces, so that

c(t) =

 a
(

t
t0

)
if t ∈ [0, t0]

b
(

t−t0
1−t0

)
if t ∈ [t0, 1]

12

where a and b are Bézier splines with the same degree as c. The control points for a and b are a

byproduct of de Casteljau evaluation of c(t0). For the case of cubic splines, using the notation from

Figure 2.2:

a0 = c0 = c(0) a1 = d0 a2 = d3 a3 = d5 = c(t0)

b0 = d5 = c(t0) b1 = d4 b2 = d2 b3 = c3 = c(1)

The spline corresponding to an arbitrary subinterval of another spline is constructed by applying

this procedure twice, once for each endpoint.

We will often employ cubic Bézier splines, since these can reproduce arbitrary positions

and derivatives at their endpoints.

Bézier splines are presented in more detail in many standard texts [18, 55].

2.3 Adaptive cubic interpolation

Returning to the contouring problem, we want to find f−1(0) for some f : D → R with D ⊂ R a

closed interval. We will provide the Contour procedure with inputs f , D, and two tolerances ε1,

and ε2. We expect it to output points x1, . . . , xn within ε1 + ε2 of the roots of f on D.

Contour begins with a mesh consisting of the single interval D. The endpoints of the

interval are called vertices, and represent points at which we evaluate the function f and its deriva-

tive. The interior of the interval is called an element, and represents a region where we use the

interpolant to construct f̃ .

If the error model says that the error of approximation in a particular element is more

than ε1, that element will be refined. The mesh bisects the interval, inserting a new vertex at

the midpoint. The error model is designed to indicate regions near roots which will need more

subdivisions than other regions, resulting in an adaptive sampling of f .

Elements are divided into two sets: the working set and the result set. The working set

consists of all elements that still require analysis. Elements are placed in the working set when they

are created as part of subdivision. The working set initially contains only the interval D. The result

set consists of all elements that do not need further refinement. These are the elements that are

interpolated and contoured.

The interpolant takes the values and derivatives of f at the endpoints of each interval, and

constructs the unique matching cubic Bézier spline. If we have two adjacent intervals, they share

the value and derivative of f at their common point. Thus the piecewise cubic interpolant is C1.

2.4 Error model

Since a cubic has four degrees of freedom, it is completely determined by two values and two

derivatives. Therefore, the interpolant given above reproduces cubics exactly.

13

0 0.2 0.4 0.6 0.8 1
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Figure 2.3: Maximum g(x) for C2 f with K = 1 and h = 1.

Let us assume that f is C2. We would like to know the maximum error maxx |g(x)| where

g(x) = f(x)− f̃(x). Restricting our attention to a single element, we can, without loss of generality

assume that the domain is [0, h] and that f and f ′ agree with f̃ and f̃ ′ at x = 0 and x = h. Therefore,

g(0) = g(h) = g′(0) = g′(h) = 0. Let K = maxx |g(2)(x)|. A straightforward computation shows

that the largest possible value for maxx |g(x)| over all C2 functions is achieved with

g(x) =


Kx2 if x ∈

[
0, h

4

]
Kh2

8 −K
(
x− h

2

)2
if x ∈

[
h
4 , 3h

4

]
K(x− h)2 if x ∈

[
3h
4 , h

]
as can be seen in Figure 2.3. Note that this g is not C2, but it is the limit of C2 functions. This

g(x) has a maximum of Kh2

8 , achieved at x = h
2 .

This worst case error also applies in the case that g has Lipschitz derivative. If

|g′(x)− g′(y)| < K |x− y| ,

then again |g(x)| has a maximum of Kh2

8 between two samples.

For a smooth function f , we expect cubic approximation to accurately reproduce f once

we have sufficiently resolved the major features of its graph. Adding more samples should cause K

to decrease rapidly.

For example, consider a function f that is well approximated by a polynomial
∑k

i=0 fix
i

for x ∈ [0, h]. Again the error, g(x) = (f − f̃)(x), and the derivative of the error, g′(x), will be zero

at x = 0 and x = h. This time, however, g(x) will be a polynomial of degree k. We can write a basis

for the set of possible polynomials as g4(x), g5(x), . . ., gk(x). Here the gi(x) have degree i, leading

coefficient 1, satisfy gi({0, h}) = 0 and g′i({0, h}) = 0. Note that there are no polynomials with

degree < 4 satisfying these conditions — 1D cubic approximation reproduces cubics polynomials

exactly. These conditions uniquely determine g4(x) = x2(x − h)2 = x4 − 2hx3 + h2x2. For i > 4,

choose gi(x) to minimize the ∞-norm ‖gi‖∞ = maxx∈[0,h] |gi(x)| subject to the above conditions.

14

0 0.2 0.4 0.6 0.8 1
-0.02

0.00

0.02

0.04

0.06

0.08

g
4

g
5

Figure 2.4: Basis for g(x) for polynomial f with h = 1

f

f̃

xiε

x̃i

g(xi)

Figure 2.5: Interpolation error and slope determine the distance between the roots of f̃ and f .

For example,

g5(x) = x2 (x− h)2
(

x− h

2

)
= −h3

2
x2 + 2h2x3 − 5

2
hx4 + x5 .

Both g4 and g5 are depicted in Figure 2.4. Writing g in this basis:

g(x) = c4g4(x) + c5g5(x) + . . . + ckgk(x) .

By the triangle inequality

‖g‖∞ ≤ |c4| · ‖g4‖∞ + |c5| · ‖g5‖∞ + · · ·+ |ck| · ‖gk‖∞ .

We can directly compute the maximum absolute values of the gi. The maximum of |g4(x)|, h4

16 ,

occurs at x = h
2 . The maximum of |g5(x)|, h5√5

250 , occurs at x = h
(

5±
√

5
10

)
. Therefore the error is

max
x∈[0,h]

|g(x)| = |c4|
h4

16
+ |c5|

h5
√

5
250

+ O(h6) .

For small h, a good estimate for a bound on |g(x)| is Kh4

16(4!) where K is a bound on f (4)(x).

15

This g(x) represents the interpolation error introduced by using f̃ instead of f . We would

like to guarantee that the roots of f̃ are within ε1 of the roots of f . Let xi be a root of f and x̃i be

the corresponding root of f̃ . Applying the mean value theorem to f̃ on the interval [x̃i, xi] gives

f̃ ′(c) =
f̃(xi)− f̃(x̃i)

xi − x̃i

=
g(xi)− 0
xi − x̃i

for some c ∈ [x̃i, xi]. This is illustrated in Figure 2.5. To insure |xi − x̃i| ≤ ε1, it is sufficient to have

ε1 ≥
maxx |g(x)|

minx

∣∣∣f̃ ′(x)
∣∣∣ .

This leads to a simple set of criteria for deciding whether to refine an element [a, b] or contour it:

• Compute the interpolation error using, for example, K|b−a|4
16(4!) .

• Compute the minimum of
∣∣∣f̃ ′∣∣∣ on the interval [a, b]:

– Compute the Bézier spline representing the derivative of f̃ using the technique from

Section 2.2.

– Find the convex hull of the ordinates of the derivative spline (an interval).

– If the convex hull includes 0, refine the interval.

– Otherwise, take the minimum of the absolute values of the endpoints of the convex hull.

• If the interpolation error divided by the minimum of |f̃ ′| is less than ε1, f̃ is a good approxi-

mation to f .

• Otherwise, refine the interval.

With the algorithm given above, an interval with a zero derivative will be subdivided until

one of two things happens:

• the point with the zero derivative is separated from the root, or

• the interval shrinks to size ≈ ε.

A more complicated test can reduce the amount of subdivision and function sampling when there

is a double root. Consider the case where a ≤ xi, x̃i,m ≤ b, f(xi) = 0, f̃ (x̃i) = 0, f̃ ′(m) = 0,∣∣∣f(x)− f̃(x)
∣∣∣ < E and f̃ ′′(x) ≥ L > 0 for all a ≤ x ≤ b. The case f̃ ′′(x) ≤ L < 0 is symmetric.

Then, the worst case is when f̃ ′′(x) = L since, as we will see, a higher second derivative implies

lower error. The maximum possible difference between f and f̃ is shown in Figure 2.6. Therefore

the maximum possible difference |xi − x̃i| (assuming f and f̃ have the corresponding roots) is when

16

E

ε

Figure 2.6: Worst case error when f̃ ′(m) = 0, f̃ ′′ > L, and
∣∣∣f − f̃

∣∣∣ ≤ E.

f(x) = L(x−xi)2 and f̃(x) = L(x−xi)2−E (or vice versa). In this case, x̃i = xi±
√

E
|L| . Therefore,

we can stop subdividing when
√

E
|L| < ε1.

In this section, our goal has been to insure that the interpolation error has not introduced

more than ε1 difference in the roots. The root-finding algorithm, in section 2.6, ensures that it finds

all roots of f̃ to within ε2. The total error is therefore bounded by ε1 + ε2. Increasing ε1 decreases

the number of samples of f . Increasing ε2 decreases the number of iterations of the root-finding

algorithm. Usually ε1 > ε2, especially if the function is time-consuming to evaluate.

The algorithm in Algorithm 2.1 uses safe radii to eliminate elements that have no roots

from consideration. Given a vertex v, a radius r is said to be safe if f(x) 6= 0 for all |x−v| ≤ r. The

SafeRadius function takes the vertex v and a desired radius r0, determines the maximum value D

of the derivative of f within r0 of v, and returns min{f(v)/D, r0}. Note that the return value will

never be larger than r0. However, if the return value is less than r0, decreasing r0 may increase the

return value.

2.5 An alternate algorithm

An alternate approach is needed when bounds on the derivative are not available. Both the com-

putation of interpolation error and the culling of elements with no roots are affected. An alternate

contouring algorithm is shown in Algorithm 2.2.

Without some bound on the interpolation error, perhaps from a bound on |f (4)| or
∣∣∣∣(f − f̃

)′′∣∣∣∣,
we cannot be sure we have subdivided enough to insure the roots have deflected by less than ε1. In

this case, we make do with an estimate for the error. We compare the value and derivative of f̃ at

the midpoint x 1
2

of the interval [x0, x1] to the actual value and derivative of f at x 1
2
.

On one half of the interval, the difference in the derivatives of f and f̃ serves to cancel out

the error, but on the other half the errors reinforce. By restricting to the latter half, we define the

error, g(x), between f and f̃ on the interval [0, r] with r = x1−x0
2 . Note that g(x) has the following

17

procedure Contour(Mesh, Function, Interpolant, ErrorModel, ε1, ε2):

while Mesh.WorkingSet not empty:

Element = Mesh.WorkingSet.Pop()

for Vertex in Element.Vertices:

ifVertex.Value not evaluated:

Function.Evaluate(Vertex)

if Element.Diameter ≤ ε1+ε2:

Mesh.ResultSet.Push(Element)

else:

Mesh.IntializeCenterVertex(Element)

Function.Evaluate(Element.Center)

Error = ErrorModel.EstimateError(Element, Interpolant)

if Element.Vertices.Value signs agree and

Interpolant.Cull(Element, Error):

Mesh.DiscardElement(Element)

else if ErrorModel.StoppingCriteria(Element, Error, ε1):

Mesh.ResultSet.Push(Element)

else:

Mesh.Refine(Element)

return Interpolant.ContourElements(Mesh.ResultSet, ε2)

Algorithm 2.2: Alternate contouring algorithm without derivative bounds

18

properties:

g(0) =
∣∣∣f(x 1

2
)− f̃(x 1

2
)
∣∣∣

g′(0) =
∣∣∣f ′(x 1

2
)− f̃ ′(x 1

2
)
∣∣∣

g (r) = 0

g′ (r) = 0

These conditions define a cubic polynomial defined on the interval [0, r], g̃(x) = (ax +

b)
(

x
r − 1

)2, which we will assume is a good approximation of g(x). Here a and b are functions of

g(0) and g′(0). For our error estimate, we will take the maximum of g̃ in the interval [0, r] and

multiply it by some user-specified safety factor to account for the difference between g̃ and g. To

find the maximum of g̃(x), we set g̃′(x) = 0:

g̃′(x) = a
(x

r
− 1
)2

+
2
r
(ax + b)

(x

r
− 1
)

=
(x

r
− 1
)(

a
x

r
− a +

2
r
ax +

2
r
b

)
=

(x

r
− 1
)(3a

r
x− a +

2b

r

)
x = r or

a− 2b
r

3a
r

Since x = r corresponds to the minimum in the interval, the maximum occurs at x = ar−2b
3a .

We would like this error estimate to be conservative. To check that this procedure gives

reasonable values, observe what happens when we apply it to f(x) = Kg4(x) = Kx2(x − h)2 on

[0, h] from Section 2.4. Since f(0), f(h), f ′(0), and f ′(h) are all zero, the cubic interpolation gives

f̃
(

h
2

)
= f̃ ′

(
h
2

)
= 0. The actual value at x = h

2 is E = K h4

24 — though the derivative there is zero.

The predicted error is the maximum of e(x) = E
(

4x
h + 1

) (
2x
h − 1

)2 on
[
0, h

2

]
. Using the terminology

above, r = h
2 , a = 4E

h , and b = E. The root is at x = 0, so the maximum of e(x) is e(0) = E. This

is exactly the error.

Now we apply the same procedure to f(x) = Kg5(x) = Kx2(x−h)2
(
x− h

2

)
on [0, h]. Again

the values and derivatives of f at the endpoints are zero, so the predicted value of f and its derivative

at the midpoint is zero as well. In this case the value of f is zero, but the derivative is D = Kh4

24 . The

estimated error is the maximum of a cubic e(x) whose value is 0 at 0 and h
2 and whose derivative

is D at 0 and 0 at h
2 . In this case, e(x) = Dx

(
2x
h − 1

)2. So r = h
2 , a = D, and b = 0, and the

maximum is at x = h
6 . Plugging in to e(x) we get an error estimate of 2Dh

27 = 2Kh5

432 ≈ 0.0046296Kh5.

Compare this with the actual error Kh5√5
250 ≈ 0.0089443Kh5, and we see that we need to make some

allowance to avoid under-estimating the error. We could either:

1. have a safety factor of at least 2,

19

2. conservatively estimate the error as |∆f |+ |∆f ′| 2h
27 , or

3. multiply the difference between the derivatives of f and f̃ by 2 before making the estimate.

We use the third option since it most accurately estimates the error. Note that the error term from

the difference in derivative has a small coefficient that shrinks with h, so it will tend to be negligible

unless the difference in value happens to be very small.

Once the error has been determined, we can sometimes determine that f has no zeroes on

a particular element. We simply take the spline representation for f̃ and see if the convex hull of the

ordinates is within the error margin of zero. If not, the element need not be considered further. This

costs more computations than the safe radius method described above, but it can be more accurate

and may save evaluations of f .

2.6 Finding the zeros of piecewise-cubic functions of one real

variable

Finding the roots of polynomials is a very old problem [99, 92]. Many iterative methods [99],

including for example the Newton method, can find one root of a general function to high accuracy,

starting from a good estimate of its location. These techniques can efficiently increase the accuracy

of a root once it has been located, but do not guarantee location of all the roots. For polynomial

functions, special techniques such as Sturm sequences [99] and resultants [4, 61] can be used to

determine all the roots, but operate in the power basis rather than the Bézier basis.

A simple robust divide-and-conquer technique for finding the roots of a spline is bisection.

We start with the Bézier ordinates for the spline over the whole interval. If the ordinates are either

all positive or all negative, then there are no roots and we are done. Otherwise, we divide the interval

into two equal pieces, and compute the ordinates for the spline restricted to those two pieces. The

ordinates for each piece are tested, and either discarded or subdivided. This process continues until

the interval being tested is smaller than the error tolerance, ε2. In most cases, only the pieces

containing roots are subdivided. Each subdivision reduces our error in half, adding one binary digit

to our answer. Thus, bisection gives linear convergence.

An alternative technique is called the interval Newton method [47]. In this technique, the

Newton method is applied to intervals representing the domain and derivative of the function. The

resulting intervals are intersected with the domain and the procedure is repeated. This technique

converges quadratically to roots — the number of correct digits doubles in every iteration.

We have implemented a third technique developed by Sherbrooke and Patrikalakis [90].

This method converges quadratically, and has a generalization to higher dimensions. A description

of this technique is given in Section 2.6.1.

20

function RootsOfSpline(Ordinates, Threshold, ε):

WorkList = [ConvexIntersection(Ordinates)]

ResultList = []

while WorkList not empty:

CurrentInterval = WorkList.Pop()

CurrentOrdinates = SubSpline(Ordinates, CurrentInterval)

IntersectionInterval = ConvexIntersection(CurrentOrdinates)

if IntersectionInterval not empty:

NewInterval = CurrentInterval.SubInterval(IntersectionInterval)

if NewInterval.Length() < 2*ε:

ResultList.Push(NewInterval.MidPoint())

factor out root here

else if IntersectionInterval.Length() > Threshold :

probably have two distinct roots

WorkList.Push(NewInterval.SubInterval([0,.5]))

WorkList.Push(NewInterval.SubInterval([.5,0]))

else:

WorkList.Push(NewInterval)

return ResultList

Algorithm 2.3: Roots of a spline in 1D.

All of these techniques work directly with polynomial splines of any degree and are guar-

anteed to locate all roots in the interval in exact arithmetic. We chose the technique by Sherbrooke

and Patrikalakis since it is easy to understand how it works, it extends to multiple dimensions, and

it was the choice of Grandine and Klein [49].

2.6.1 A spline root finder using convex hulls

The basis of the Sherbrooke-Patrikalakis root finding algorithm is the graph convex hull property

of Bézier splines described in Section 2.2. Given any Bézier spline f̃ : [0, 1] → R with ordinates

{b0, b1, . . . , bn}, its graph G =
{(

x, f̃(x)
)
|x ∈ [0, 1]

}
lies entirely in the convex hull of the control

points
{
(0, b0), (1

n , b1), . . . , (1, bn)
}
. Therefore, the roots of f̃ must lie inside the intersection of

this convex hull with the x-axis. The algorithm alternates computing the intersection of the x-axis

with the convex hull of the control points, giving a new interval, with computing the ordinates

corresponding to f̃ restricted to that new interval.

If the new interval is more than Threshold times the length of the old interval, then the

21

algorithm falls back to using bisection. This usually happens when the interval contains two distinct

roots. Without bisection the interval must always contain both and cannot shrink. Threshold is

generally between 0.6 and 0.8.

Pseudocode for the algorithm is in Algorithm 2.3. The functions MidPoint, Length, and

SubInterval are defined, given intervals x, y, by:

x.MidPoint()=(x.begin+x.end)/2

x.Length()=(x.end-x.begin)

x.SubInterval(y)=[x.begin+y.begin*x.Length(), x.begin+y.end*x.Length()]

The function SubSpline(Ordinates, SubInterval) returns the ordinates of the spline with ordinates

Ordinates on [0, 1] restricted to the subinterval SubInterval, as described in Section 2.2. The algo-

rithm always subdivides the original interval to avoid accumulation of errors.

This algorithm converges quadratically to roots as long as f intersects the x-axis trans-

versely. At double roots, we get linear convergence.

2.6.2 Robustness

We employ two strategies to ensure all roots were found. First, before applying the convex-hull-

intersection algorithm (described in Section 2.6.4), we replace each ordinate by a vertical segment

εR tall. This prevents small errors from making tiny ordinates miss the x-axis. Second, if an interval

ever shrinks to smaller than ε2, we enlarge it to be exactly ε2 wide. When an interval gets very small

(much smaller than ε2, typically), small errors can cause the interval to miss an actual root.

Here εR does not affect the accuracy of the roots xi. It is present to avoid making incorrect

decisions in the presence of floating point errors. εR can be much smaller than ε1 or ε2. Note that

εR is applied to values in the range of f and ε1,2 are applied to values in the domain.

In order to disambiguate the case where two roots are very close together, we can apply

deflation: we factor out any roots that we have found before continuing. In higher dimensions,

deflation is complicated.

2.6.3 Deflation in the Bézier basis

Assume we have a degree n Bézier spline f̃ : [0, 1] → R with ordinates {b0, . . . , bn}, and x0 ∈ [0, 1]

where f(x0) = 0. We want to compute the spline ordinates for f̃(x)/(x − x0). Since f̃(x) is a

polynomial with a zero at x0, we know f̃(x) has x−x0 as a factor. Dividing two polynomials in the

Bernstein basis in general requires solving a linear system, which is much more expensive than the

synthetic division algorithm applied in the power basis. However, we have derived a simple formula

for the case where the root is at one of the endpoints of the interval.

We can force the root to be at an endpoint by first subdividing the spline at x0 with de

Casteljau’s algorithm from Section 2.2. This results in two splines: one covering [0, x0] and one

22

covering [x0, 1]:

Left half fl(t) : [0, 1] → R fl(t) = f̃(t · x0) ,

Right half fr(t) : [0, 1] → R fr(t) = f̃(x0 + t(1− x0)) .

Then x− x0 can be factored out of both.

The functions fl and fr are defined by the Bézier ordinates {l0, . . . , ln} and {r0, . . . , rn}
with l0 = b0, rn = bn, and ln = r0. Since we subdivided at a root, ln and r0 are in fact both 0, and

these values need not be computed. Dividing by x− x0 gives us splines of degree n− 1.

l′0 = − l0
x0

l′1 = − n

n− 1
l1
x0

l′2 = − n

n− 2
l2
x0

...

l′n−1 = −n

1
ln−1

x0

r′0 =
n

1
r1

1− x0

r′1 =
n

2
r2

1− x0

...

r′n−1 =
n

n

rn

1− x0

Note that l′n−1 = r′0 should hold. These will be zero if f̃ has a double root at x0. If we only care

about finding roots we can leave off the n
x0

and n
1−x0

terms: these only scale the function and do

not change the roots. This conveniently avoids problems in the cases x0 = 0 and x0 = 1.

We can then proceed to find roots on either side of x0 with these new splines. If WorkList

is a queue, roots will be visited in left-to-right order. As a result, we need only the right hand

sub-spline after factoring out a root. This algorithm does not seem to have been described in the

literature. Here is a derivation of the r′i formula (the only one we use).

Theorem 1 If f̃ : [0, 1] → R is a degree n > 0 Bézier spline with ordinates {f0, . . . , fn} where

f0 = 0, then f̃(x) = xg(x) where g(x) is a Bézier spline with degree n−1 with ordinates gi = fi+1
n

i+1

for i = 0 . . . n− 1.

Proof: By definition of Bézier splines:

f̃(x) =
n∑

i=0

fi

(
n

i

)
xi(1− x)n−i .

23

Since f0 = 0, the first term in this sum is zero. Every other term has i > 0 and therefore contains

x to a positive power. Factoring x out from the entire sum gives:

f̃(x) = x
n∑

i=1

fi

(
n

i

)
xi−1(1− x)n−i .

Then we may re-write the sum as a degree n− 1 Bézier spline thus:

n∑
i=1

fi

(
n

i

)
xi−1(1− x)n−i =

n−1∑
j=0

fj+1

(
n

j + 1

)
xj(1− x)n−(j+1)

=
n−1∑
j=0

fj+1

(
n

j+1

)(
n−1

j

)(n− 1
j

)
xj(1− x)(n−1)−j

=
n−1∑
j=0

fj+1
n

j + 1

(
n− 1

j

)
xj(1− x)(n−1)−j

=
n−1∑
i=0

gi

(
n− 1

i

)
xi(1− x)(n−1)−i .

When x0 6= 0, we need to divide out x − x0 from fr. Over the interval [x0, 1], this factor

goes linearly from 0 to 1− x0. Dividing by 1− x0 returns us to the case where we are factoring out

a term going linearly from 0 to 1.

2.6.4 Convex hull intersection

The convex-hull-intersection algorithm should, given four vertical intervals I0 = (0, [y00, y01]), . . . , I3 =

(1, [y30, y31]), compute the intersection of the convex hull of I0, . . . , I3 with the x-axis.

We divide this into 9 possibilities. The first segment is either above, below, or crossing

the x-axis. The last segment can be in either of those three positions as well. These 9 possibilities

fall into the 4 cases, shown in Figure 2.7. In all cases, we either know an endpoint directly (when

the first or last segment crosses the x-axis) or can determine it using only half of the input data —

either the bottoms or tops of the vertical segments:

1. If both I0 and I3 cross the x-axis, the intersection is the whole interval.

2. If one crosses the x-axis and the other is above or below the x-axis (4 possibilities), we know

one endpoint and have to find the other. In the example shown in Figure 2.7, we know the

left endpoint and we need only look at the bottoms of the vertical line segments to determine

the right endpoint.

3. If one is above the x-axis and the other below the x-axis (2 possibilities), one endpoint (the left

endpoint in the example given in Figure 2.7) comes from the tops of the vertical line segments,

the other from the bottoms.

24

maxmax

min

min

max

maxmin

min

(1) (2)

(3) (4)

Figure 2.7: Examples of cases 1–4 for finding the intersection of the convex hull (dotted lines) of

four vertical line segments with the x-axis.

25

4. If both segments are above the x-axis or both are below the x-axis (2 possibilities), then we

only need to look at the bottoms (as in the figure) or tops of the vertical line segments. In

this case, there may be no intersection at all.

Since the problem is small, we can resolve these cases with brute force. For each possible

pair of the four segment endpoints, we intersect the corresponding line segments with the x-axis. As

an optimization, if we are trying to find the left endpoint, we can ignore any segment strictly to the

right of any intersection we have already located.

For case 4, there is an additional optimization that is especially helpful if there are more

than four vertical intervals (if, for example, we are dealing with a polynomial of higher degree).

Assume that there are sign changes, so the intersection is non-empty. We segment the points we are

considering into four sets:

1. the points before the first sign change,

2. the points between the first and second sign changes,

3. the points between the last two sign changes, and

4. the points after the last sign change.

If there are only two sign changes (such as in Figure 2.7(4)), sets 2 and 3 will be the same. We then

consider only lines going through one point from each of the first two sets or each of the last two

sets.

Contouring in 2D and 3D (Chapters 3 and 4) requires finding many roots of splines and

therefore many convex hull intersections. The optimizations given above lead to a performance

improvement in all of these cases.

2.7 Results

We tested our contouring routines with f(x) = sin(100x2)/(10x) (Figure 2.8), which has 32 roots on

the interval [0, 1]. The error tolerance ε was set to values between 0.001 and 2× 10−9. These tests

executed too quickly to time reliably.

The cubic methods required many fewer evaluations to get high accuracy (Figure 2.9). With

the maximum derivative set to 20, 177 function and 125 derivative evaluations gave a maximum error

of 5.5×10−7. If instead the error was estimated using the sampling method of Section 2.5, that same

error bound required 221 function and 221 derivative evaluations. Linear interpolation required 617

function evaluations to achieve a maximum error of 6.7 × 10−7. The cubic method was also very

scalable, reducing the error by a factor of 15 with 10% more evaluations. The linear method, in

contrast, reduced the error by a factor of 5 with 10% more evaluations. In all cases, the average

error was between one-half and one-quarter of the maximum error.

26

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

si
n(

10
0x

2
)/

(1
0x

)

x

Figure 2.8: The test function f(x) = sin(100x2)/(10x)

100

1000

10000 1e+06 1e+08 1e+10 1e+12 1e+14 1e+16

ev
al

ua
ti

on
s

1/max error

Linear
Max Derivative

Sampling

Figure 2.9: Total number of function and gradient evaluations needed to achieve the given maximum

error

27

Chapter 3

Finding the contours of a C1

function of two real variables

In the two dimensional case, that is f : D → R where D is a compact subset of R2, the

contours are curves in the plane. This is a much harder problem than the 1D case, and there are

more choices for the interpolation and adaptive mesh schemes.

A flowchart of our approach is given in Figure 3.1. First, an error estimate guides adaptive

sampling of the function. An approximation to the function is constructed by cubic interpolation of

the samples. Each cubic patch is then contoured: the patch is divided into panels and a piecewise-

cubic spline is fit to the contours within each panel. This step employs 1D and 2D root finding

at several points. Finally, the contours from each cubic patch are connected to the contours of

neighboring patches to yield a globally defined curve set.

3.1 Previous work

Previous 2D contouring schemes are either grid-based or gridless. Gridless methods query the

function to follow individual contours. Grid methods assume the function value is known only at

some prespecified grid points. If the function is available at arbitrary points, an adaptive grid can

be used to reduce the number of function evaluations without loss of accuracy. There are also

useful subsidiary techniques designed for contouring particular classes of functions such as quadratic

polynomials.

Gridless methods [35] trace each contour continuously around the domain. Given the last

two points computed on the contour, extrapolation steps forward to find points on the left and right

sides of the contour. If the sign of the function differs at the two points, the next point on the

contour is determined by linear interpolation, as in Figure 3.2. Otherwise the step size is cut in half

and the process is repeated until a sign change is detected.

28

Cubic spline
patches

Clough-Tocher [24]
Sibson split square [94]

Binary Triangle Trees

Mitchell [66], Sewell [89]
Newest Vertex Bisection Mesh

Triangular and
Square elements

Panels

Spline contouring

Curve fitting

Root finding

Grandine-Klein [49]

Adaptive Mesh

Error estimate

Interpolant

Jigsaw Puzzle

Hermite interpolation
High accuracy geometric

Sherbrooke-Patrikalakis [90]

Spline contours

Section 3.8

Section 3.3

Section 3.6.1

Section 3.4

Section 3.6.2

Section 3.5

de Boor et al. [28]

Section 3.7

Figure 3.1: Data flow between modules of the 2D contouring algorithm

29

P1

P2 S2

S1

P3 contourh

Figure 3.2: Given the last two points on the contour, P1 and P2, two sample points S1 and S2 are

extrapolated. If f(S1) and f(S2) have different signs, then the next point on the contour, P3, is

found by linear interpolation. Otherwise the step size h is halved and the step repeated.

Typically the function is evaluated on some coarse grid to find points on each contour to

initiate this process. Gridless methods are adaptive: they sample the function more densely in areas

where the contours have high curvature. They may require many function evaluations, however.

Grid methods take a function that has already been evaluated on a set of points, such as a

uniform rectangular grid or a triangular mesh. They typically use piecewise-linear interpolation to

construct an approximation to the function that is easy to contour. The resulting contours may be

smoothed as a post-process using a curve-fitting routine. Petersen [73] has summarized several grid

methods.

Petersen [73] gives a particularly sophisticated grid method for scattered data. He first

uses cubic interpolation to approximate f , and then used subdivision and degree reduction to build

piecewise-linear contours. Peterson’s algorithm:

• triangulates the initial positional data, minimizing the maximum interior angle;

• estimates the gradient at each vertex by Little’s method [58];

• builds a piecewise-cubic Clough-Tocher interpolant [24] (see Section 3.4.3) to the known data;

• discards cubic patches that do not contain a piece of the contour;

• uses a lower degree approximation to the patch if it does not introduce too much error, and

otherwise subdivides the patch;

• contours each patch when it is reduced to a linear spline, resulting in a single line segment.

Petersen’s criteria for lowering the degree of a patch involves the minimum of the magnitude of the

gradient at the corners of the patch.

Strain [100] uses restricted quadtrees to contour a moving interface. The adaptive nature

of quadtrees allows most of the sampling to be concentrated near the contour.

30

All of the above techniques yield piecewise-linear (polygonal) contours. Techniques that

produce higher-order contour representations typically only apply to functions represented in a

particular spline basis. Grandine and Klein [49] have a contouring method applicable to functions

given as tensor-product splines. Elber and Kim [34] have an approach for rational splines. Worsey

and Farin [111] have a technique for contouring a bivariate quadratic polynomial over a triangle. Fu

[43] and Preusser [77] considered the case of a bicubic Bézier patch.

To apply these techniques to an arbitrary function, that function must first be approximated

with an appropriate spline. We use cubic interpolation to approximate the function. Each cubic

piece is then contoured using a technique similar to that of Grandine and Klein [49]. This approach

is modular; a different contouring technique could be employed as long as it was paired with a

compatible interpolant.

3.2 Bézier patches

There are two natural generalizations of Bézier splines to 2D: rectangular Bézier patches and trian-

gular Bézier patches. We will primarily use the latter, but a description of the former follows for

completeness.

Rectangular Bézier patches, also known as tensor product Bézier patches, are defined on

the unit square [0, 1]2. The set of degree-d tensor product patches is the span of all monomials

where the exponents of x and y (in the power basis) are each at most d,
∑d

i=0

∑d
j=0 cijx

iyj . For

d = 3, these patches are called bicubic polynomials. A Bernstein basis for rectangular Bézier patches

consists of all products of 1D Bernstein basis elements with degree at most d in x and y:

Bd
i⊗j(x, y) = Bd

i (x)Bd
j (y) .

Ordinates cij ∈ Rn define C(x, y) : [0, 1]2 → Rn by

C(x, y) =
d∑

i=0

d∑
j=0

cijB
d
i⊗j(x, y)

=
d∑

i=0

d∑
j=0

cijB
d
i (x)Bd

j (y)

=
d∑

i=0

d∑
j=0

cij

(
d

i

)
(1− x)d−ixi

(
d

j

)
(1− y)d−jyj .

These coordinates cij are naturally arranged in a square grid called the control mesh for the Bézier

patch, see Figure 3.3(a).

Rectangular Bézier splines have the convex hull property and the variation diminishing

property described in Section 2.2. They are affine invariant and pass through the four corner control

points. Restricting C to the boundary of the domain yields a degree-d Bézier spline on each edge.

31

c00

c01

c02

c33

c30

c31

c32

c03

(a)

c10 c20

c13 c23

c30c00

c03

(b)

c02 c12

c21c01

c10 c20
C

B

A

Figure 3.3: The control mesh for (a) rectangular and (b) triangular Bézier spline patches with degree

d = 3

The control points for these boundary curves are a subset of the control points for the whole patch.

For example, the restriction to [0, 1]× {0} has control points c00, . . . , cd0.

Triangular Bézier patches have a total degree of d. That means that the sum of the

exponents of x and y in each monomial is at most d. In the power basis, triangular Bézier patches

have the form ∑
i,j≥0, i+j≤3

cijx
iyj .

By stars and bars [81], there are
(
d+2
2

)
coefficients cij . The argument is as follows: consider d stars

which we want to divide into three bins labeled i, j, and k. There are
(
d+2
2

)
ways of lining up d

stars and 2 bars. If d = 3, one way would be:

?? | ? | .

Let the number of stars before the first bar be i (2 in the example), the number between the two

be j (1 in the example), and the number after the last bar k (0 in the example). In this way, we

identify each configuration of stars and bars with a distinct element of the power basis xiyj1k = xiyj ,

i, j ≥ 0, i + j ≤ d.

Given a triangle defined by vertices A,B,C ∈ R2, any point inside the triangle can be

uniquely represented as sA + tB + rC where s, t, u ∈ [0, 1] and s + t + u = 1. These barycentric

coordinates are the natural parameters for a triangular Bézier patch. The basis functions are indexed

by i, j, k ≥ 0 with i + j + k = d:

Bd
ijk(s, t, u) =

(
d

i j k

)
sitjuk .

Here
(

d
i j k

)
= d!

i!j!k! . These control points are form a triangular grid, as in Figure 3.3(b). Three

representative basis functions are shown in Figure 3.4.

Triangular Bézier patches also have the convex hull and variation diminishing properties

of Section 2.2. They are affine invariant and restriction to the boundary yields three 1-dimensional

32

(a) B3
300(x, y, 1− x− y)

(b) B3
201(x, y, 1− x− y)

(c) B3
111(x, y, 1− x− y)

Figure 3.4: Basis functions for triangular Bézier patches, with the corresponding control polygon.

33

degree-d Bézier splines. The control points for these boundary curves are the control points along

the boundary of the patch. Since the total degree is d, the restriction to any line segment is a degree

d polynomial in one variable.

We will typically work on the reference triangle with vertices A = (1, 0), B = (0, 1), and

C = (0, 0). In that case, s = x, t = y, and u = 1− x− y, and the Bézier patch is∑
i,j≥0,i+j≤d

cij

(
d

i j d− i− j

)
xiyj(1− x− y)d−i−j

using the substitution k = d− i− j. The partial derivative of this expression with respect to x (or

y) is another Bézier patch with degree d− 1, and with control points given by c′ij = d (ci+1,j − cij)

(respectively c′ij = d (ci,j+1 − cij)).

De Casteljau’s algorithm generalizes to evaluate triangular patches. As in 1D, it takes d

steps, and each step consists of several linear interpolations. Each step is an application of the de

Casteljau operator which takes barycentric coordinates (s, t, u) with s + t + u = 1, plus the control

points [cij]i+j≤d for a degree d ≥ 1 patch and produces control points [c′ij]i+j≤d−1 for a degree d− 1

patch, according to the formula:

c′ij = sci+1,j + tci,j+1 + ucij .

See Figure 3.5(a). Applying this operator d times with the same (s, t, u) results in a single control

point with the value of the original patch at (s, t, u), as in Figure 3.5(b). Schumaker and Volk [87]

give an alternative representation of Bézier patches that permits more efficient evaluation.

The intermediate values generated in this process can be used to subdivide a triangular

patch into three sub-patches, as in Figure 3.5(c). These sub-patches reproduce the values of the

original patch but on smaller domains, see Figure 3.5(d). This can be useful, but repeated application

of this three-way split results in long, skinny triangles. It is possible, however, to use the de Casteljau

operator to find the control points for an arbitrary triangle. Assume the new triangle T ′ has vertices

v0, v1, v2 located in the original triangle T at barycentric coordinates (sk, tk, uk) for k = 0, 1, 2.

Define Ck to be the de Casteljau operator using barycentric coordinates (sk, tk, uk). Then the c′ij

coordinate of T ′ is Ci
0C

j
1Cd−i−j

2 applied to the control points of T . Further details about patch

subdivision may be found in Böhm et al. [18]. More information on Bézier patches can be found in

the literature [18, 36, 55].

3.3 Mesh refinement

In the 1D case, the domain of the function to be contoured was an interval. In the 2D case, the

domain D consists of an arbitrary finite triangulation in R2. In fact, the techniques used in this

chapter work equally well with any triangulation of a closed 2D manifold with boundary. Most

commonly the domain will be a simple rectangle such as D = [0, 1]2.

34

(a) (b)

(c) (d)

Figure 3.5: Evaluation and subdivision of a triangular Bézier patch by the de Casteljau operator:

(a) one application of the de Casteljau operator with d = 3, (b) the d steps for evaluating the patch

at a point. The points computed by the de Casteljau operator may be used to subdivide a patch

into three sub-patches. (c) Points used by one of the sub-patches. (d) Three sub-patches cover the

same domain as the original patch.

35

Figure 3.6: A refinement scheme should avoid creating hanging nodes/T-junctions.

We will sample the function f at the vertices of the initial triangulation, but this will

generally not be sufficient to resolve f to the desired accuracy. We need a scheme for refining this

mesh. In order to make a continuous interpolant, the mesh should be conforming : the intersection

of any two triangles should be either a common edge, a vertex, or empty. Our refinement scheme

should not introduce hanging nodes (also known as T-vertices or T-junctions, see Figure 3.6) into

the mesh, since they cause discontinuities in the interpolant.

There are many 2D adaptive mesh refinement algorithms that create conforming meshes.

Almost any of these could be used in our contouring framework. We use binary triangle trees, also

known as newest-vertex-bisection meshes [66, 89], since they use a single triangle shape and a single

type of split.

One mesh refinement algorithm, red-green triangulations [9], uses two types of splits. First

any element that needs to be refined is divided into four congruent triangles using the regular or red

split. Any triangle with two or three (red) split neighbors is also split using the red rule. Triangles

with one red neighbor are split in half to remove the hanging node. This is called a closure or green

split. Binary triangle trees are simpler since they have a single type of split. Binary triangle trees

have the property that refined meshes are properly nested in their (coarser) ancestors. Also, binary

triangle trees create meshes with fewer triangles.

Restricted quadtrees [106, 95, 84] produce almost the same meshes as binary triangle trees.

The refinement rule for a quadtree divides a square into four equal squares. As long as adjacent

squares differ by at most one level of refinement, the quadtree can be triangulated without hanging

nodes. A binary triangle tree is somewhat simpler to program and can represent a larger class of

adaptive meshes.

The refinement rule for longest-edge-bisection [80] always splits the longest edge of a tri-

angle. The neighboring triangle is first recursively split until its longest edge is the same as the first

triangle’s. Then both triangles may be split without introducing a hanging node. The recursion will

always terminate because every recursive call is splits a longer edge. Longest-edge-bisection of an

isosceles right triangle gives the same mesh as newest-vertex bisection, but the decision procedure

36

base
neighbor

base
neighbor

peak

base edge

peak

binary triangles

Figure 3.7: A diamond is two binary triangles oriented base-to-base.

for the latter is based solely on the combinatorial topology of the mesh, and does not require any

edge lengths. Longest-edge-bisection can create many different conjugacy classes of triangles, but

the smallest angle is bounded away from zero.

Binary triangle trees start with a base or coarse mesh of triangles, called binary triangles,

covering the domain D. This triangulation is the coarsest that can be represented by the binary

triangle tree. Every triangle in the base mesh has a distinguished edge, called the base edge, identified

by the opposite vertex, called the peak of the triangle. Typically, the vertices are identified by the

order they are listed.

The base neighbor of a binary triangle T is the neighboring triangle across the base edge.

Ideally, a triangle and its base neighbor will both have the common edge as the base edge. This

configuration is called a diamond, depicted in Figure 3.7. It is also desirable for the base edge to be

the longest of a triangle. If the domain is a unit square, the base mesh will be chosen to consist of

two isosceles right triangles forming a diamond. A technique for choosing base edges for arbitrary

triangulations is given by Mitchell [66].

The refinement operation for binary triangle trees is called a split. The split operation

takes a diamond and bisects each of the triangles, see Figure 3.8. This is accomplished by bisecting

the base edge, adding one vertex to the mesh. This new vertex is connected to the peaks of the

triangles in the diamond, adding two edges to the mesh. The net effect is that two triangles are

replaced with four. The new vertex is the peak of the new, or child, triangles. This explains the

newest-vertex-bisection terminology: the peak marks the most recent vertex in any given triangle

and defines how it will next be split.

There is another split operation for binary triangles whose base edge is on the boundary

of the triangulation. This type of split also adds a vertex at the midpoint of the base edge. One

new edge is introduced, and the binary triangle is replaced with two smaller binary triangles. Both

37

Split

Figure 3.8: The split operation refines the mesh without introducing hanging nodes. The split

introduces a new vertex and replaces two triangles with four.

A B D

C

Figure 3.9: Adjacent triangles are always within one level of refinement.

versions of the split operation maintain the invariant that adjacent triangles are within one level of

refinement (see Figure 3.9). More specifically, the base edge of a triangle is always either:

1. a boundary edge (triangle D),

2. the base edge of the neighboring triangle at the same level of refinement (triangles A and B,

forming a diamond), or

3. the leg of the neighboring triangle which is one level coarser (triangle C).

The split operation has been given for the first two cases. In the third case splitting the

triangle would introduce a hanging node (see Figure 3.6), causing the mesh to be non-conforming.

This problem is resolved by splitting the neighboring triangle first, in what is called a force split. A

force split may cause other force splits (as in Figure 3.10), but this process will always terminate —

every step increases the size of the triangle and decreases the level of refinement.

Repeated application of the split operation to every triangle gives Figure 3.11. This is the

(4, 82) Laves lattice [51]. Since the split operation takes right isosceles triangles to right isosceles

triangles, the mesh has triangles with a single similarity class.

38

Figure 3.10: Splitting a triangle may force other triangles to split.

(a) (c)

(d) (f)

(b)

(e)

Figure 3.11: Uniform subdivision of a binary triangle results in 2n triangles in level n.

To store a binary triangle tree, we use two (C++) vectors: one for the triangles of the mesh,

one for the vertices. Each vertex stores a position, a function value, and any other data needed by

the contouring algorithm (such as function gradients or a safe radius). Each triangle stores:

• the indices (in the triangle vector) of its three neighbors,

• the indices (in the vertex vector) of its three vertices and the center vertex (if any), and

• the next triangle in the result set (if this triangle is in the result set).

The center vertex is defined to be the bisector of the base edge. When a given triangle is split, it

is replaced with one of its child triangles; the other child triangle is added to the end of the vector.

Some care is needed to keep everything straight: splitting a triangle in the working set may cause

triangles in the result set to split as well. This is why each element needs to know whether it is in

the result set.

Newest-vertex-bisection meshes have been generalized to n dimensions (see Section 4.2).

39

3.4 Interpolation

In 1D, we constructed an approximation to f by cubic Hermite interpolation (Section 2.3). This

exactly reproduces cubic polynomial functions, and gives C1 continuity between elements. If the

derivative of the function f is not known, there are a number of simple schemes for estimating a

derivative based on neighboring values.

In 2D, given values and gradients at the vertices of a triangle, we would like to construct

cubic spline patches that are both faithful (ideally reproducing cubic polynomials exactly) and match

smoothly at patch boundaries. C1 continuous interpolation is especially important for contouring —

the continuity of the contours is at most the continuity of the function being contoured. Without a

C1 continuous interpolant, the computed contours can have corners or cusps.

Unfortunately, getting C1 continuity and reproducing cubics is much more difficult in the

2D case. In fact, whether the vertices of a triangulation can be interpolated by a C1 function with

a single cubic polynomial per triangle is an open problem of approximation theory.

As a a result, there are several different interpolation techniques, each with different trade-

offs. For a comprehensive survey see [55].

3.4.1 Nine Parameter Interpolant

For a triangular cubic spline patch, nine of the ten control ordinates are immediately determined

from f and ∇f at the triangle vertices. The last control point is in the center and can be chosen

to give quadratic precision: to reproduce quadratic polynomial surfaces exactly. However, no choice

of the center control point based solely on the data on the corners (the local data) will give C1

continuity between adjacent triangles.

3.4.2 C1 Hermite Interpolant

To guarantee C1 continuity with a single triangular patch covering each triangle, a quintic polynomial

and C2 data at each vertex is required. In general, to get Cr continuity, all ordinates within a distance

2r from the edge must be constrained. Thus C2r data at each vertex is required. If the degree of

the patch is less than 4r + 1, some ordinates must be determined from the (conflicting) information

at two different corners.

Finally, with a quintic polynomial interpolant, there are
(
5+2
2

)
= 21 ordinates to determine.

Since only 9 degrees of freedom are specified (the values and gradients at the three corners of the

triangle), additional information must be estimated or synthesized from neighboring elements.

3.4.3 Clough-Tocher Interpolant

The Clough-Tocher interpolant [24] divides each triangle into three subtriangles, called micro-

elements. A triangular cubic Bézier patch is used on each micro-element. This scheme gives addi-

40

a b

c

d

11

1

1

1

1

1

2

2 2

3 3

1

3

1

Figure 3.12: The Clough-Tocher interpolant divides triangular elements into three micro-elements.

tional control points without raising the degree of the element and decreases coupling between the

constraints on each edge of the original triangle.

There are 19 ordinates to determine (see Figure 3.12). Each of the three cubic patches has

10 ordinates, but some are shared between the micro-elements to enforce C0 continuity between the

micro-elements. The values of the function at a, b, c determine the ordinates at the vertices. The

gradients at the three corners determine the ordinates labeled 1 in the figure.

The ordinates labeled 2 in the figure are determined by the cross-boundary derivatives at

the midpoint of each edge. C1 continuity is achieved by having adjacent triangles agree on the cross-

boundary derivative on their shared side, in addition to the values and gradients at the endpoints of

that side. One choice that gives C1 continuity without data from the neighboring triangle is to use

condensation of parameters. The cross-boundary derivative of a cubic is generically a quadratic, but

we can use our degree of freedom to make it linear by picking the cross-boundary derivative that is

the average of the values at the endpoints. However, this choice prevents us from reproducing cubic

polynomials exactly.

The remaining control points are chosen so that the micro-elements meet each other with

C1 continuity. Ordinates of type 3 are chosen to lie in the plane containing the nearest type 2

control points and the type 1 control point on the same (internal) edge. By affine invariance, this

will always be achieved by taking the average of those three control points.

The last ordinate, d, is chosen to lie in the plane of the three type 3 ordinates. Hence d is

the average of the type 3 ordinates. This enforces C1 continuity at d, because the tangent plane at

d is spanned by d and the type 3 ordinates. It turns that out that this also enforces C2 continuity

at d [1, 36]. Basis elements for Clough-Tocher interpolation are shown in Figure 3.13.

This interpolation scheme reproduces quadratic functions exactly. In order to reproduce

cubic functions, a more sophisticated estimate of the cross-boundary derivative is needed. For ex-

ample, the C2 discontinuity between adjacent macro-elements can be minimized [60]. If the function

is cubic, the C2 discontinuity can be eliminated. For contouring, reducing the C2 discontinuity

between elements produces contours with smoother curvature.

41

(a)

(b)

Figure 3.13: Basis functions for Clough-Tocher interpoloation.

42

3.4.4 Powell-Sabin Interpolants

There are two Powell-Sabin interpolants [75]. One uses 6 micro-elements per macro-element, the

other uses 12. Both use a quadratic spline patch on each micro-element. Typically, the first version

is used when the largest angle of the macro-element is smaller than 75 degrees. By subdividing at the

center of the inscribed circle as the dividing point (instead of the center of the circumscribed circle),

the six-element version can be used exclusively. Powell-Sabin interpolation is popular for contouring

because it is easier to contour a quadratic patch (yielding rational quadratic spline contours) than

a cubic. A robust algorithm for contouring quadratics is given in [111].

3.4.5 Triangle-Square interpolant

Binary triangle trees have two types of elements: right isosceles triangles and squares (referred to

as diamonds in Section 3.3). We combine the cubic split-square interpolant of Sibson [94] with

Clough-Tocher interpolation on the triangles. The split-square interpolant matches with Clough-

Tocher interpolation on boundaries with C1 continuity. The procedure for constructing Sibson’s

split-square interpolant is:

1. Divide the square into four cubic triangular micro-elements (see Figure 3.14).

2. Set vertices a, b, c, and d to the values from the function we are interpolating.

3. Set ordinates of type 1 from the value and gradient of the nearest corner.

4. Set ordinates of type 2 so that the cross-boundary derivative at the midpoint of the edge is

halfway between the value at the corners.

5. Ordinates of type 3 must be set to the average of the two adjacent type 2 ordinates for

continuity. This also ensures that the type 3 ordinates lie in a plane: Indeed let the type 2

ordinates be y1, . . . , y4 and the type 3 ordinates be z1 = (y1 + y2)/2, . . . , z4 = (y4 + y1)/2. The

zi are planar if z1 + z3 − z2 = z4, or

y1 + y2

2
+

y3 + y4

2
− y2 + y3

2
=

y4 + y1

2

which is always true.

6. The central vertex e must lie in the plane spanned by the type 3 ordinates for continuity. This

can be accomplished by setting e to the average of all four type 3 ordinates, or the average of

two opposite type 3 ordinates. In terms of the yi above, the value at e is 1
4 (y1 + y2 + y3 + y4).

This scheme reproduces quadratics exactly and the micro-elements join with C1 continuity.

Basis elements for Sibson split-square interpolation are shown in Figure 3.15.

Sibson also gives a piecewise-quadratic interpolant [94] that matches the Powell-Sabin in-

terpolant on triangles (Section 3.4.4).

43

3 3

33

2

2

22

1 1

11

11

11

1

1

1

1

a

b c

d

e

Figure 3.14: The Triangle-Square interpolant divides square elements into four triangular micro-

elements.

3.5 Error model

As in the 1D case, we want to compute the interpolation error divided by the slope of the function

(or our approximation) at the contour. The interpolation error can be estimated either by using a

bound on the third derivative of f or by sampling f at the midpoint of the element. The slope of

the function is the magnitude of the gradient.

Since the triangle-square interpolant of Section 3.4.5 reproduces quadratics exactly, the

error terms are approximately piecewise-polynomials of degree at least 3. As in the 1D case, we will

first construct a basis for these polynomials.

Consider the function f = x3 on the right isosceles triangle with vertices (0, 0), (0, h),

(h, 0). Figure 3.16(a) exhibits f as a cubic Bézier patch. To compute the error for Clough-Tocher

interpolation on this triangle, sample the value and gradient of f at the three corners of the triangle.

The Clough-Tocher construction builds the three cubic Bézier triangles shown in Figure 3.16(b).

To compare the two, we can use the de Casteljau algorithm (Section 3.2) to subdivide f into three

cubics in the same configuration as Clough-Tocher (Figure 3.16(c)). The difference is shown in

Figure 3.16(d). Note that the interpolant agrees with f along the boundary, where it reproduces

cubics. Also observe that the second column and row of the difference are zero — since the cross-

boundary derivative is constant along the left and bottom edge. The maximum of the difference

is at one of the points where the gradient equals zero. Using the equation solver from Section 3.7

below yields:

Maximum of 0.0283967h3 achieved at (.4127712h, .4127712h) .

This result has been verified using Maple.

Applying the same process to 3x2y, shown in Figure 3.17, gives a maximum error of 24
361h3 ≈

0.0664820h3 at (8h
19 , 4h

19). By swapping x and y — equivalent to flipping these diagrams over the line

44

(a)

(b)

Figure 3.15: Basis functions for Sibson split-square interpoloation.

45

0

0

0

0

00

0

0

0

0 0 0

(d)

0
0

0

−2

−9

−3

−3

0

0

0

0

00

0

0

0

0 0 0

(c)

0

0

0

4
12

36
108

(b)

0

0

0

0

00

0

0

0

0 0 0

0

2

108

−9

−3

9

36

(0, h)

00

0

0

0 0

0

0

(0, 0) (h, 0)
(a)

0 108

Figure 3.16: All of the ordinates in these diagrams should be multiplied by h3

108 . (a) The cubic

x3 restricted to an isosceles right triangle of size h, in the Bézier basis. (b) The Clough-Tocher

approximation to the same function. Subdividing (a) using the de Casteljau operator results in (c).

(d) The error: (b)-(c).

46

x = y — we get the error bounds for 3xy2 and y3. We can construct a bound on the interpolation

error of a cubic polynomial using the triangle inequality:(
0.0283967

6
|fxxx|+

0.0664820
6

|fxxy|+
0.0664820

6
|fxyy|+

0.0283967
6

|fyyy|
)

h3

So if we have a bound on some measure of the third derivative, say

|f (3)| =
√

f2
xxx + 3f2

xxy + 3f2
xyy + f2

yyy ≤ K ,

we can maximize the expression above: The error is at most 0.0112538Kh3. Note that the given

expression for |f (3)| is insensitive to rotation and so can be used without knowing the orientation of

the interpolating elements.

We now apply this procedure to the Sibson split-square interpolant on the square (0, 0),

(h, 0), (h, h), (0, h). If f = x3 or f = y3, fxy = ∂2f
∂x∂y = 0, and therefore the cross-boundary

derivative is constant on all four sides. In this case, the interpolant exactly reproduces f . This

leaves the function f = x2y, shown as four cubic Bézier patches in Figure 3.18(a). The xy2 case

is symmetric. Note fxy = 2x, which is constant for the vertical edges of the square. This implies

the cross-boundary derivative, fx, varies (at most) linearly along those edges. The ordinates of

the second and second-to-last columns in the Sibson split-square interpolant, Figure 3.18(b), are

therefore correct.

The maximum of the magnitude of the Sibson split-square error, Figure 3.18(c), 0.039446h3

occurs at (0.5h, 0.774292h). The interpolation error on cubic polynomials combines this term with

the symmetric term arising from f = x2y:(
0.039446

2
|fxxy|+

0.039446
2

|fxyy|
)

h3 .

If |f (3)| ≤ K the corresponding error bound is 0.039446Kh3
√

6
≈ 0.016104Kh3.

Without a bound on the third derivative of f , we can instead estimate the interpolation

error. We begin by sampling the value of f at the center of the element and compare it to the

interpolated values of f̃ . In Figure 3.16(d), the difference in the cross-boundary derivative at the

subdivision point (.5h, .5h) is 3h2

4

√
2 ≈ 1.0606602h2. The error of 0.0230377h3 is the difference in the

cross-boundary derivative, ∆f⊥, multiplied by 2(0.0230377)h
√

2
3 ≈ 0.0217202h. For the components in

the direction of the boundary edge, ∆f and ∆f‖, use the calculation is the same as the 1D case.

This gives an error bound of

|∆f |+ |∆f⊥|0.0217202h + |∆f‖|
2h
√

2
27

.

This bound is useful only if it also applies to the error from Figure 3.17(d). In that case, the cross-

boundary derivative is again 3h2

4

√
2 ≈ 1.0606602h2 in magnitude. This follows since the two diagonal

rows of ordinates closest to the diagonal edge are the same between Figure 3.16(d) and 3.17(d), up

47

(b)

0

0

0

0

0

0

0 0 0

0
5

6 36

12

112

15

6
0

0

0

0

00

0

0

0 0 0

(d)

0
0

0
1

2
3

3

2

60

0

0

0

0

0

0

0

0 0 0

(c)

0
4

364
8

12

12

0

(0, h)

00

0

0

0 0

0

(0, 0) (h, 0)
(a)

0 0

36

Figure 3.17: All of the ordinates in these diagrams should be multiplied by h3

36 . (a) The cubic

3x2y restricted to an isosceles right triangle of size h, in the Bézier basis. (b) The Clough-Tocher

approximation to the same function. Subdividing (a) using the de Casteljau operator results in (c).

(d) The error: (b)-(c).

48

(h, h)

(h, 0)(0, 0)

(0, h)

0

0

0

0 0

0

0

0
0 0

0

(a)

0

0

0

0

0

0 0

0

0

0
0 0

0

(c)

0

0

0

0 0
0

0

0

0

0

0

0 0

0

0

0
0 0

0

(b)

4

4

3

16

24
4

24

16

4

3

1

−1 −1

−3

1

1

1

1

88
5

1

1212

8 8

6 512

8 8

Figure 3.18: All of the ordinates in these diagrams should be multiplied by h3

24 . (a) The cubic x2y

restricted to a square of size h, in the Bézier basis. (b) The Sibson split-square approximation to

the same function. (c) The error: (b)-(a).

49

to sign. To get the error of 24
361h3 ≈ 0.0664820h3, we multiply |∆f⊥| by 4(24)h

3(361)
√

2
≈ 0.062680h. The

final error bound is

|∆f |+ |∆f⊥|0.062680h + |∆f‖|0.104757h . (3.1)

Of course, this should be multiplied by a user-specified safety factor.

For the Sibson split-square case (Figure 3.18), we compute the difference in the value ∆f

and gradient (∆fx,∆fy) at the center of the element (.5h, .5h). The interpolant reproduces x3 and

y3 exactly, while f = x2y yields |∆fy| = h2

4 and ∆f = ∆fx = 0. By symmetry, f = xy2 yields

|∆fx| = h2

4 and ∆f = ∆fy = 0. In either case, the maximum error is 0.039446h3, which is 0.157784h

times the difference in gradient. This gives the conservative error bound:

|∆f |+ (|∆fx|+ |∆fy|) 0.157784h . (3.2)

Combining this with the formula for error on triangles (Equation 3.1) provides a reasonable error

estimator for the triangle-square interpolant without an a priori bound on |f (3)|.
In the 1D case we constructed min

∣∣∣f̃ ′∣∣∣ a lower bound on the magnitude of the derivative

of f̃ . In the 2D case we would like a lower bound min
∣∣∣∇f̃

∣∣∣ on the magnitude of the gradient of f̃ .

With the triangle-square interpolant f̃ is locally a cubic polynomial represented as a Bézier patch.

Differences of adjacent ordinates produce quadratic Bézier patches representing f̃x and f̃y. The

convex hull of these ordinates provides minimum and maximum values for f̃x and f̃y. We can give

a lower bound for
∣∣∣∇f̃

∣∣∣ using

minmag(a, b) =

{
0 if 0 ∈ [a, b]

min(|a|, |b|) otherwise .

Then

min
∣∣∣∇f̃

∣∣∣ ≤√minmag
(
min(f̃x),max(f̃x)

)2

+ minmag
(
min(f̃y),max(f̃y)

)2

. (3.3)

Unfortunately, it is very common for these intervals to contain zero, even when the gradient

is large on the contours. Further, this is a conservative lower bound for |∇f | that will typically not be

achieved. A more accurate estimate can be computed from the quartic Bézier patch corresponding

to f2
x + f2

y by taking the square root of the minimum ordinate. This may still be quite pessimistic

since it is unlikely that the minimum gradient magnitude occurs on the contours.

Optimistically, the values of
∣∣∣f̃x

∣∣∣ and
∣∣∣f̃y

∣∣∣ will be near their average values. We can compute

the average values of f̃x and f̃y exactly: we simply take the average of the ordinates of their Bézier

patch. This works since each of the quadratic basis elements has the same volume. Indeed up to

symmetry, there are only two types of control points: edge and corner. A representative corner basis

function gives volume: ∫
4

B2
200 dA =

∫
s+t+u=1, s,t,u≥0

s2 dA

50

=
∫ 1

0

∫ 1−s

0

s2 dt ds

=
∫ 1

0

(1− s)s2 ds

=
∫ 1

0

s2 ds−
∫ 1

0

s3 ds

=
1
3
− 1

4
=

1
12

A representative edge basis function gives the same volume:∫
4

B2
110 dA =

∫
s+t+u=1, s,t,u≥0

st dA

=
∫ 1

0

∫ 1−s

0

st dt ds

=
∫ 1

0

1− s

2
s ds

=
1
2

∫ 1

0

s ds− 1
2

∫ 1

0

s2 ds

=
1
4
− 1

6
=

1
12

If (fx)min = min(f̃x) and (fx)max = max(f̃x) have the same sign, then the average of
∣∣∣f̃x

∣∣∣ is
the same as the average of f̃x. Otherwise, we need to make some assumption about the distribution

in order to estimate the average value of
∣∣∣f̃x

∣∣∣.
The simplest assumption is that all values in

[
(fx)min, fx

]
and

[
fx, (fx)max

]
are equally

likely. This is a piecewise-constant approximation to the distribution. Let p(s) be the distribution

defined on [(fx)min, (fx)max]. It must satisfy:∫
p(s) ds = 1∫

sp(s) ds = fx

assuming

p(s) =

{
L if s ≤ fx

R if s > fx .

The linear system

L
(
fx − (fx)min

)
+ R

(
(fx)max − fx

)
= 1

L

2

(
fx

2 − (fx)2min

)
+

R

2

(
(fx)2max − fx

2
)

= fx

determines L and R. Once L and R are determined, the absolute value of the distribution can be

created, and the mean found, as in Figure 3.19. This gives a crude estimate for the average of |fx|,
but it will always be greater than zero.

51

min 0 max

(a) fx (b) |fx|
min 0 maxaverage average

Figure 3.19: (a) Assuming the distribution of values of fx is piecewise-constant. (b) The correspond-

ing distribution for |fx|.

Finally, we set the optimism level, a number between 0 and 1, to linearly interpolate

between the lower bound given in equation 3.3 and the estimate of the average value of the gradient

magnitude. Even a small value for optimism will ensure this number is greater than zero. This is

important to avoid division-by-zero errors in the computation of the deflection of contours due to a

given interpolation error.

It is possible to check that the a given optimism level is not too optimistic at the end of

the contouring process. As each cubic element is contoured, the gradient magnitude is computed

at a large number of points along the contour, especially at the curve fitting stage of Figure 3.1. If

the minimum magnitude is returned, it can be checked against the minimum magnitude that would

be safe with the given triangulation. If it is too small, the optimism level can be reduced and the

contouring restarted.

Much simpler and less reliable error estimates are often used in the literature. For example,

Petersen et al. [74] takes the minimum magnitude of the gradients at the vertices.

3.6 Finding the zero set of cubic functions of two real vari-

ables

Traditionally, either linear or quadratic interpolants (such as Powell-Sabin, see Section 3.4.4) have

been used to interpolate 2D data. Quadratic triangular Bézier patches are relatively easy to contour,

and linear patches are trivial to contour. The zero set of a bivariate quadratic polynomial consists

of conic sections. These may be represented exactly using a rational quadratic spline. There are

several schemes for finding these contours given a quadratic in the Bernstein-Bézier basis, for example

Marlow and Powell’s Fortran implementation [62]. A stable, robust, fast algorithm is in [111].

Contouring bicubic Bézier patches [43, 49, 77] involves a much larger space of functions, with

16 degrees of freedom compared to 6 for quadratic elements. The contours of a bicubic polynomial

can have as many as 8 components (Figure 3.20). We have modified Grandine-Kleine’s technique

[49] to contour cubic polynomials.

52

Figure 3.20: The zero set of the bicubic function c(x)c(y)+0.0125 with c(t) = 3(1−2t)(1−4t)(3−4t)

consists of 8 components in the square 0 ≤ x, y ≤ 1.

53

3.6.1 Modified Grandine-Klein contouring

We interpolate f by triangular cubic Bézier patches (Section 3.4.5). To find the contours of these

patches, we extend Grandine and Klein’s algorithm for finding the contours of rectangular tensor-

product spline patches [49] to handle triangular cubic spline patches. This section describes the

parts of Figure 3.1 from Spline Contouring to Curve Fitting. These techniques may be extended to

higher degree polynomials with a few straightforward modifications.

Figure 3.21 depicts the normal operation of the algorithm. The first step (Figure 3.21(a))

is to find boundary and critical points.

The boundary points are zeros of the function on the boundary of the triangle, or equiv-

alently the points where the contours intersect the boundary. They are found by applying the 1D

root finder from Section 2.6.1 to the control ordinates along each edge of the triangle. Boundary

points are classified as either entering or leaving depending on the gradient of f . Note that ∇f is

perpendicular to the contours of f , and therefore defines the tangent and normal to the contour.

If the contour inside the triangle is below the intersection, we say the contour is leaving and the

intersection point is a leaving point. If the contour extends above the intersection point, we classify

the point as entering. Special cases such as horizontal tangents or zero gradients are discussed below.

Critical points are points where the function and the horizontal component of the gradient

are both zero. Section 3.7 below details how to find these points. By examining the second partial

derivatives of the function, we can determine the curvature at critical points and classify the points

as either minima or maxima (min and max respectively in Figure 3.21(a)) of a contour. If the

curvature is zero, the point is classified as horizontal. The zero-gradient special case is discussed

below.

Next, a horizontal line is drawn through each of the boundary and critical points, dividing

the triangle into trapezoidal panels; see Figure 3.21(b). The 1D cubic root finder from Section 2.6.1

is applied to each of these horizontal lines to find other intersections along the panel boundaries. New

roots found this way are labeled no transition. Next, each of the roots on the panel boundaries are

analyzed to determine their below and above numbers. The below number for a point is the number

of contour segments ending at this point from the panel below. Similarly, the above number gives

the number of contour segments starting at that point and extending into the panel above. The sum

of the below and above numbers is the valence of that point. The below and above numbers usually

determined by the classification of a point: a maximum has (below, above) of (2, 0), an entering point

has (0, 1), and a no-transition point has (1, 1). In Figure 3.21(b), the below and above numbers are

adjacent to the corresponding contour point.

The sum of the above numbers along a panel boundary equals the sum of the below numbers

one line higher, and these should agree with the number of intersections of any horizontal line within

the panel with the contours. Our code checks this by counting the roots of the cubic restricted to

the horizontal line midway within each panel.

54

(a) (b)

(c) (d)

max

enterenter enter

enter

leave

leave

horizontal

1 1 1

2
0

1
1 1

1

1

11
0

1
1

1

0

0

0 0 0

Figure 3.21: Our modified Grandine-Klein algorithm for contouring a spline patch has four main

steps. (a) First the boundary points and interior critical points are determined. (b) The triangle is

divided into panels. The intersections with the panel boundaries are labeled with their below and

above numbers. (c) Contours within the panel are determined using the technique of de Boor et al.

[28]. (d) The spline contours are connected according to the combinatorial topology at the panel

boundaries.

55

The third step is to find the contour segments within each panel. The main tool used in

this step is the technique of de Boor et al. [28]: a cubic spline with specified position, tangent, and

curvature at the two endpoints is used to construct a single spline segment representing the contour.

Next, the closest point on the contour to the midpoint of the spline is computed. If the distance

between these two points is above the error threshold, the tangent and curvature are measured at

the midpoint on the contour. The process of constructing a spline approximating the contour is

recursively repeated on each half, producing cubic splines fitted to the contour and joining with G2

continuity.

Finally, the contour segments are glued together at the panel boundaries. This process is

divided into two stages. First, vertically-stacked contour segments are concatenated. Then, each

sequence of the form (segment, maximum, segment, minimum, . . .) is identified. These sequences

can either start and end at edges or form a loop. In either case, every other segment is reversed and

the result concatenated.

3.6.2 The complete algorithm

The above summary does not explain how many of the special cases are handled. Grandine and

Klein’s original algorithm does not address many of the following situations, and can allow contours

to cross if the function has a saddle point:

• Zero gradient

• Zero curvature at a critical point

• Horizontal tangent at an edge

• Zero boundary edge

• Thin panel (any panel that is O(ε) thick)

• Spurious roots

Our modifications to the algorithm provide for all of these situations. An outline of the full algorithm

is given in Algorithm 3.1, using the following modules:

FactorOutZeroSides If any edge of the triangle patch is identically zero then a linear factor must

be divided out of the cubic. Otherwise we will not be able to detect where contours enter

or leave the triangle. Dividing the linear factor out of a 2D cubic polynomial is much like

deflation applied to a 1D polynomial (Section 2.6.3): Assume that the cubic is y times a

quadratic factor. The bottom row of ordinates are all zero, and the remaining basis elements

have y as a factor. Factoring out y from a cubic basis element gives a constant multiple of

56

function ContourCubicTriangle(Cubic, ε, εR):

if all Cubic.Ordinates positive, negative or zero:

return []

State.Cubic=Cubic

State.ε=ε

State.εR=εR

State.FactorOutZeroSides()

State.FindRootsOnEachSide()

if State.DetermineGoodSide() returns error:

return State.ThreeStraightLinesCase()

return State.AddZeroSides(TryOrientation(State))

function TryOrientation(State):

State.ComputeGradients()

State.InsertEdgePoints()

State.InsertInteriorPoints()

if State.TData is empty:

return []

State.FindRootsAtSameT()

State.RemoveRedundantInterior()

State.InitializePanels()

if State.Panels is empty:

return State.NoPanelsCase()

State.ComputeGuideLines()

State.SetBeforeAfter()

State.BuildStrands()

State.SplineForStrands()

return State.StitchConnectedStrands()

Algorithm 3.1: Contouring a cubic Bézier triangle in 2D.

57

one of the quadratic basis elements. The degree raising procedure for Bézier patches is then

applied to change the quadratic into a cubic:

a03

a02 a12

a01 a11 a21

0 0 0 0

= y


a03

3
2a02

3
2a12

3a01 3a11 3a21



= y


a03

1
3a03 + a02

1
3a03 + a12

a02 + a01
1
2 (a02 + a12 + 2a11) a12 + a21

3a01 a01 + 2a11 2a11 + a02 3a21

 .

FindRootsOnEachSide passes a subset of the 10 ordinates for the triangular cubic spline to the

1D spline root-finder (Section 2.6.1), which determines all intersections of the contours with

the edges of the triangle.

DetermineGoodSide DetermineGoodSide considers the three orientations of the cubic trian-

gle. An orientation is considered good if there is no horizontal line (other than possibly the top

vertex) where the cubic is identically zero. If there is a root from FindRootsOnEachSide on

two sides within ε of the same height, this function checks two points equally spaced between

the two edges at that height. If there are zeros of the function within ε of both points, then

this orientation is bad.

Once a good side is known, the cubic finder may be initialized. Given a height, the cubic

finder returns a 1D cubic spline that is the restriction of the triangular cubic to the horizontal

line at that height. It requires the two 1D cubic polynomials defining the function restricted to

the non-horizontal edges, and the quadratics defining the partial derivative in the horizontal

direction along those two edges.

NearAZero This function is used by DetermineGoodSide (above), InsertEdgePoints, and

InsertInteriorPoints (below) to see if a Bézier patch has a zero within ε of some point. This

is determined by subdividing to a 2ε square neighborhood of the point and then determining

if two ordinates have different signs.

ThreeStraightLinesCase A cubic that has no good side can only be the product of three linear

terms, where each term’s contour is a line parallel to a distinct side of the cubic patch. This

case is contoured by dividing the straight lines at any intersection points that fall within

the triangle. At those intersection points, the contours are glued together using the contour

merging routine from Section 3.8 below.

Grandine and Klein deal with this case by allowing arbitrary orientations of the spline patch

to be considered. This is needed when the degree of the patch is greater than 3.

58

ComputeGradients This procedure computes the partial derivatives of the cubic in the s and

t directions. Each is a triangular quadratic patch. The ordinates of each quadratic are the

differences between adjacent ordinates (in either the s or t direction) in the cubic, times 3 (the

degree of a cubic).

InsertEdgePoints For each root found in FindRootsOnEachSide, this computes a gradient,

transition type, and curvature. This corresponds to the first half of Figure 3.21(a). Edge

transition types can be:

Entering if the gradient, and therefore normal, indicates the contour is entering the triangle.

These also occur when the gradient is vertical and the curvature indicates this point is a

minimum.

Leaving is the opposite of entering.

No Transition if the contour is tangent to this edge.

Horizontal at Edge if the gradient is vertical and the curvature is zero.

Unknown at Edge if the gradient is zero.

Isolated can happen at the corners or when the contour’s only point in triangle is a tangent

point.

The tests to see if a value are zero actually use NearAZero to be sure that the zero is not

missed due to inaccuracies. We detect roots within ε of the corners and use additional tests to

make sure they are classified correctly and do not appear on two separate sides. Every edge

point is labeled with a side from 0 to 2, except corner points which are numbered from 3 to 5.

InsertInteriorPoints This function simultaneously solves f̃ = 0 and f̃s = ∂f̃
∂s = 0 to find interior

critical points. See Section 3.7 for one algorithm that finds all solutions to these two equations.

It then computes a transition type and curvature for these points. Transition types may be:

Minimum if the sign of f̃ss/f̃t is negative.

Maximum if the sign of f̃ss/f̃t is positive.

Horizontal if the curvature of the contour is zero.

Unknown if the gradient is zero.

If one of the roots is within ε of an edge, it checks that the point was not already added in

InsertEdgePoints. This completes Figure 3.21(a).

If no points are found in the above two procedures, this cubic has no contours in the domain.

FindRootsAtSameT For every point x found in InsertEdgePoints and InsertInteriorPoints,

the 1D root finder (Section 2.6.1) is applied to the restriction of the cubic to the horizontal

59

ε

Figure 3.22: Errors in finding a minimum or maximum can lead to additional roots.

ε

x0

C

δ

f̃−1(0)

x1

Figure 3.23: To determine if two points x0 and x1 are redundant as in Figure 3.22, we compute the

osculating circle C at the critical point x0. Here δ is the difference in s between the two points and

f̃−1(0) is the contour we would like to find.

line containing x. Any new roots found are added with the transition type of No Transition.

This begins step 2 above (Figure 3.21(b)).

RemoveRedundantInterior Consider the situation where a minimum x0 is found in InsertIn-

teriorPoints is off by ε. Depending on the direction of the error, FindRootsAtSameT

will find either zero or two neighboring roots. If it finds two (Figure 3.22) we would like to

eliminate them as redundant.

Let x1 be a point neighboring x0, and let their difference in s, |s1 − s0|, be denoted δ. Let

K0 and K1 be the computed curvature of the contour at x0 and x1 respectively. A simple

quadratic approximation to the contour is given by t− t0 = K0
2 (s−s0)2. Plugging in t− t0 = ε

shows that δ be as large as
√

2ε
K0

, much larger than ε. We would like to avoid accidentally

eliminating a root that comes from a nearby contour. We do this by comparing the osculating

circles (determined by the curvature and tangent) of adjacent roots at the same t. Close

contours have very different osculating circles, but small changes along a single contour leave

the osculating circle nearly fixed.

The difference between the centers of the osculating circles at x0 and x1 comes from two

sources: displacement due to x1 not lying on the osculating circle from x0, and deflection due

to the change in slope between the osculating circle and x1.

A reasonable bound on the deflection term is

2ε +
∣∣∣∣dK

dδ

∣∣∣∣ δ3

3!
.

The 2ε is from the ε error determining the position of the two points. The rest of the error is

60

from the inaccuracy of the quadratic approximation, and is therefore the cubic term from the

Taylor series. To be completely conservative,
∣∣dK

dδ

∣∣ should be the maximum on [0, δ]. From the

data we have, however, we can use the estimate
∣∣K1−K0

δ

∣∣.
The deflection term is approximately the change in angle times the radius. The radius is the

inverse of curvature, so to be conservative we use rmax = 1
min(|K0|,|K1|) . The change in angle is

approximately the change in slope
∣∣dK

dδ

∣∣ δ2

2 since tan θ ≈ θ for small θ. Putting all these terms

together gives

2ε +
∣∣∣∣dK

dδ

∣∣∣∣ δ3

6
+
∣∣∣∣dK

dδ

∣∣∣∣ δ2rmax

2
.

Plugging in δ ≈
√

2εrmax, to keep the expression small for two distinct contours, gives

2ε +
∣∣∣∣dK

dδ

∣∣∣∣ (2εrmax)3/2

6
+
∣∣∣∣dK

dδ

∣∣∣∣ 2εr2
max

2
.

This can safely be multiplied by a constant such as 10 since the difference for adjacent contours

will be much larger.

InitializePanels We have now classified the contours at various t values. InitializePanels divides

the remainder of the domain into trapezoids between two such t values. It also evaluates the

cubic at the t value halfway between the top and bottom of the panel. This determines how

many strands of the contour connect the bottom of the panel with the top. For very thin

panels, less than 6ε high, the count of the number of roots at the midpoint of the panel is

unreliable. Thus instead of generating a thin panel, the roots are merged into a thick panel

boundary. Instead of a single t value for the boundary, a range of t values is stored. Further,

different points within the boundary may have different t values. Every thick boundary line

uses guide lines (see below) to resolve contour segments and the points within the boundary

line.

NoPanelsCase The above procedure finds no panels only when all roots of the cubic are isolated.

Each of these is output as a degenerate spline with all four control points at the same location.

ComputeGuideLines Points with a transition type of Unknown or Horizontal can occur at the

top or bottom of a panel. ComputeGuideLines evaluates a guide line 2ε away from the edge

of the panel. The tolerances for computing the roots along the guide line are shrunk until it

has the same number of roots as the mid-line of the panel. The goal of computing guide lines

is to resolve the ambiguity at the unknown points by extrapolating the contour from nearby

points.

SetBeforeAfter For each contour point in panel boundaries, we need to say how many strands

of the contour merge at there and how many spring from that point. For a maximum or a

minimum, this is easily established. For unknown points we need to extrapolate from the guide

line. We could use either linear extrapolation or the osculating circle. Since the distances are

61

L1 R1

R2

2ε

2ε

L2

(a)

2ε

2ε

(b)

R1L2

L1 R2

Figure 3.24: Resolution of an Unknown transition point with valence 6. Contours are extrapolated

from 2ε above and below the transition point.

so small, linear extrapolation is sufficiently accurate. Each strand is extrapolated to the panel

boundary, and associated with the closest root on the panel boundary. This completes step 2

(Figure 3.21(b)).

At this point, the panel is checked for consistency. The sum of the before or after numbers is

compared to the number of roots along the mid-line of that panel. If there is a disagreement,

the cubic patch is rotated, and the contouring starts over, as in DetermineGoodSide. This

prevents a nearly horizontal contour contained entirely within a thin panel from creating havoc

later.

BuildStrands This procedure determines the topology of of the contour segments. It iterates

through the the points along the panel boundaries resolving the topology there. For most

transition types, this is straightforward. The tricky cases are Unknown and Unknown at Edge.

The resolution of the Unknown at Edge cases is deferred until these contours are merged with

the adjacent triangle’s contours (see Section 3.8 below). Unknown points with a valence of 2

are straightforward, since they are equivalent to a Maximum, a Minimum, or a No Transition.

For Unknown points with a valence of 4 or 6, we need to extrapolate from where the contours

intersect the guidelines 2ε above and below the Unknown point (Figure 3.24). Each guideline

intersection is extrapolated to the horizontal line with t equal to the Unknown point. The

left-most (L1 in the figure) and right-most (R1) intersections with the mid-line are then used

to determine which pairs of contours are to be connected according to these rules:

1. Along the top and bottom, contours should alternate L and R.

2. The left-most (and right-most) contours on the top and bottom should have the same

letter.

3. If the left-most (right-most) contours are labeled L (R) then they should be connected.

62

4. Along the top and bottom, contours should be connected to adjacent contours so that

the left contour is labeled R and the right contour is labeled L.

Note that R1 may disagree with the labeling given by L1. In this case the second-left-most

L2 and second-right-most R2 are used to resolve the tie. The figure shows why these rules are

sensible; they derive from the fact that the tangent lines will intersect closer to the contour

than the asymptotes of the approximating hyperbola. Furthermore, since a cubic polynomial

is being contoured, no single line can intersect contours more than three times. This greatly

constrains the possible configurations.

SplineForStrands To interpolate between the sequence of points located on the contour, we need a

method of performing at least G1 interpolation with cubic splines. A cubic spline in the plane

has 8 degrees of freedom, 2 for each of the 4 control points. We begin with 4 constraints: the

position of both end points, p0 and p1. We can compute the unit tangent, t0, t1, and curvature,

k0, k1, information at the end points to add 4 more constraints. As long as the signs of the

curvature are consistent with the positions and tangents, this determines a cubic curve [28].

Since adjacent curves will match in position, tangent, and curvature, we will end up with G2

interpolation.

Let c0, . . . , c3 be the control points of the cubic Bézier spline we are trying to find. The position

constraints determine c0 = p0 and c3 = p1 directly. The tangent constraints restrict c1 and c2

to lie on lines tangent to the curve: thus c1 = c0 +αt0, c2 = c3−βt1 with α, β ≥ 0. Finally, we

impose the curvature constraints. Let c∗∗ = c′×c′′

|c′|3 , so c∗∗(0) = K0 and c∗∗(1) = K1, yielding

a quadratic 2× 2 system of equations for α and β:

a0α = a1 − a2β
2

b0β = b1 − b2α
2 .

It has been shown [28] that this system will have solutions if the curve is subdivided sufficiently.

Furthermore, the curve will preserve convexity and will be accurate to 6th order: The error

will be O(h7) if the end points are a distance h apart.

The system may be solved by the 2D simultaneous spline solver from Section 3.7. Alternatively,

α or β can be eliminated by substituting one equation into the other. The result is a quartic

polynomial and we may find its roots using the 1D spline root finder from Section 2.6.1. The

latter approach proved faster and more reliable. In either case we must derive bounds on the

maximum possible values that α and β can take.

If any of the coefficients are zero, we can eliminate one variable and solve the system using the

quadratic formula. If a0 and a2 have the same sign, then we may immediately conclude that

α ≤ a1
a0

and β ≤
√

a1
a2

. If b0 and b2 have the same sign, this also leads to bounds on α and

β. That leaves the case where a0a2 and b0b2 are both negative, as depicted in Figure 3.25. In

63

(0, b1
b0

)

α

β α = β

Last intersection

(a1

a0
, 0)

Figure 3.25: Plots of the solutions to the two quadratic equations in terms of α and β.

this case, we can find the largest intersection of the two equations with the line α = β, and

that will be a bound on α and β. After that point, the solutions to the first equation are to

the right of the line, and the solutions to the second equation are above the line.

If no solution can be found, we set α and β to one-third of the distance between p0 and p1.

In either case, we determine the halfway point, h̃, on the computed spline curve. Using the

cubic finder and the 1D root finder, we find the point on the contour h0 with the same t as h̃.

If this distance between h̃ and h0 is less than the error threshold, the spline approximation is

good enough. Otherwise, we consider the line tangent to the contour at h0. The t value of the

point on that line closest to h̃ is used to compute h1. If h1 and h̃ are still too far apart, the

problem is divided at h1 and the above procedure is applied to each half.

To connect a point to an Unknown at Edge point, we use a quadratic spline that matches

the tangent and curvature at one of the end points. This, in effect, extrapolates the tangent

and curvature from the point where it is known to the point where the gradient is zero. In

the construction above, the only points connected to an Unknown at Edge point are on a

guideline 2ε either above or below. The quadratic approximation is quite accurate on such

short intervals.

StitchConnectedStrands We now have a collection of strands increasing monotonically in t. This

function stitches together those connected at a common maximum or minimum. It reverses

64

Figure 3.26: The PPI algorithm projects the control polygon onto two perpendicular planes.

every other segment and then returns the final collection of splines representing the contours.

AddZeroSides AddZeroSides adds the straight line contours noted in FactorOutZeroSides

back into the solution set. It divides each straight line segment at the contour intersection

points found by FindRootsOnEachSide. These will be connected appropriately when this

triangle is glued to its neighbor in the jigsaw puzzle stage (Section 3.8).

Situations arise where the transition types at the critical points do not agree with any

consistent contour topology. These cases usually only occur when ε was large relative to the size

of the cubic patch. Specific checks for topological inconsistencies are included in NoPanelsCase,

SetBeforeAfter, and BuildStrands. When any problem is detected, the algorithm restarts

after rotating the triangular patch. If all of the good orientations have been tried, ε is reduced.

3.7 A modified Sherbrooke-Patrikalakis equation solver

The contouring algorithm requires a method for finding all of the roots of a system of polynomial

equations within a particular region. In particular, InsertInteriorPoints requires the points

(s, t) where f̃ and f̃s both vanish. Both f̃ and f̃s are represented by Bézier patches, cubic and

quadratic repsectively.

There are several possible approaches [49] to solving this problem — we follow Grandine and

65

f2f1 intersection

Figure 3.27: Given the convex-hull intersections of the two functions, restrict to where they are both

potentially zero.

Klein’s use of an algorithm by Sherbrooke and Patrikalakis [90]. The 1D version of this algorithm was

described in Section 2.6.1. The generalization to higher dimensions is called the projected-polyhedron

intersection, or PPI, algorithm. Let f1, f2, . . . , fn be Bézier patches in Rn. We will consider the

case n = 2, but the approach works for any dimension n.

1. Let the control polyhedron for fi be defined by the control points {(xj1, . . . , xjn, yj)}. For

each k ∈ {1, . . . , n}, we project these control points to R2 by mapping (xj1, . . . , xjn, yj) to

(xjk, yj). The case n = 2 is depicted in Figure 3.26.

2. Compute the ConvexIntersection (Section 2.6.4) for each i and k.

3. For each k, intersect all the intervals. We are left with a n-box which contains all of the

common zeros of the fi. The case n = 2 is depicted in Figure 3.27.

4. If the box is not much smaller in some dimension than the original domain, split the box in

half along that axis.

5. Repeat this procedure for the set {fi} restricted to each box.

The original algorithm uses rectangular regions and rectangular (tensor product) splines.

Some changes are needed to apply this approach to triangular splines:

1. The last step takes the restriction of fi to a box. This can be accomplished with subdivision

for rectangular splines. For triangular splines, two (or more if n > 2) patches are required

to cover the rectangle. See Section 3.7.3 below for an efficient method of creating the second

patch.

2. The rectangular region for roots determined by the algorithm can lie outside of the original

triangle (see Figure 3.28). Thus, the results of the algorithm need to be filtered.

66

Figure 3.28: The modified Sherbrooke-Patrikalakis solver may find solutions outside of the original

triangular domain if they are contained in the bounding box of the solutions inside the triangle.

f1 f2 intersection

Figure 3.29: The PPI algorithm can converge slowly even for linear functions f1, f2.

3. A given root can be returned twice: The problem arises when the boxes for the two triangular

patches making up a rectangle overlap. Our approach merges the boxes into a single box

containing both patches if they overlap. An alternative solution considers the two patches

together: take the union of the control points from both patches to create a single box for

both.

3.7.1 Convex hull

Observe that we never need to generate the actual convex hull of the control points, only the

intersection of the convex hull with the x-axis. Further note that the input is three or four vertical

line segments, equally spaced along the x-axis. Thus the convex hull intersection algorithm of

Section 2.6.4 works without modification.

3.7.2 Quadratic convergence

While the PPI algorithm has quadratic convergence in 1D, it converges only linearly in higher

dimensions. In 1D, the algorithm gives the exact answer for any linear function, and, by the variation

diminishing property of Bézier splines, the deviation from linear shrinks as the interval is subdivided.

In the 2D case, it can fail to converge quickly even for linear functions (Figure 3.29).

67

∇f2∇f1

f1 f2 intersection

Figure 3.30: Projecting onto the gradient direction can provide much quicker convergence.

Sherbrooke and Patrikalakis [90] have constructed an algorithm with quadratic conver-

gence, the linear-programming intersection algorithm. Due to the additional expense of solving a

linear programming problem at each step, it is not always faster than the original slowly-converging

formulation.

Elber and Kim [34] have a different modification to the PPI algorithm that uses normal

cones to detect when a region contains a single root. When this happens, they switch to using

Newton’s method, which converges quadratically to the roots.

There is a simple modification that gives the exact answer for linear functions. The idea

is to project onto a direction that is parallel to the gradient of the function instead of each of the

coordinate axes (Figure 3.30). We call this the gradient-projection intersection, or GPI, algorithm.

The ConvexIntersection function takes longer to run since there will be more input points, but

it will be run only once per function instead of n times.

We can estimate the gradient of a Bézier patch from the control points at the four corners

of the patch. There are a few cases to consider:

• If the estimated gradient for one function is near zero, we substitute the direction perpendicular

to the other function’s gradient.

• If both functions have estimated gradients near zero, we fall back on the coordinate axes.

• If the estimated gradients for both functions are nearly parallel, the problem is poorly condi-

tioned. Small changes to the control points will cause the solutions to move a great distance.

This shows up in the PPI algorithm as spurious solutions near the actual solution.

• In the worst case, f1 and f2 share a contour. The PPI algorithm outputs a large number of

points spaced ε apart along that contour. We would rather detect this case and return an

error. Using GPI, when the gradients are nearly parallel, we can analyze the patch ordinates

to see if both functions are nearly zero throughout a rectangle perpendicular to the gradient.

68

3.7.3 Subdivision

Subdivision computes the Bézier ordinates for the two triangular patches corresponding to a rect-

angular sub-domain of a triangular Bézier patch. The ordinates from the first patch are computed

using the standard technique [18].

The ordinates for the second patch may then be computed by a simple linear function of

the first patch. In the cubic case, the function is defined by

a03

a02 a12

a01 a11 a21

a00 a10 a20 a30

7→

a03 b20 b10 b00

a12 b11 b01

a21 b20

a30

where the bij are:

b20 = a03 + a12 − a02

b10 = a01 − 2a11 + a21 − 2a02 + 2a12 + a03

b00 = a30 + a03 − a00 − 6a11 + 3a10 − 3a20 + 3a01 + 3a21 − 3a02 + 3a12

b11 = a12 + a21 − a11

b01 = a10 − 2a20 + a30 − 2a11 + 2a21 + a12

b02 = a21 + a30 − a20 .

For the quadratic case

a02

a01 a11

a00 a10 a20

7→
a02 b10 b00

a11 b01

a20

where the bij are defined by:

b10 = a02 + a11 − a01

b00 = a00 − 2a10 + a20 − 2a01 + 2a11 + a02

b01 = a11 + a20 − a10 .

This map guarantees that the two patches match up with at least C0 continuity, because

the ordinates match along the common boundary, even in the presence of roundoff error in the

computation.

These equations are derived by expressing the basis elements of one patch in the coordinate

system of the other. If the lower-left triangle has coordinates (s, t) with s, t ∈ [0, 1] and s + t ≤ 1

and the upper-right triangle has coordinates (s′, t′), then s′ = 1− s and t′ = 1− t. Given f written

as
∑

i,j,k=d−i−j aijB
d
ijk(s, t) coordinates bij such that f =

∑
i,j,k=d−i−j bijB

d
ijk(s′, t′) are given in

69

the quadratic case by

a00B
2
002(s, t) = a00(1− s− t)2 = a00 (1− (1− s′)− (1− t′))2 = a00(−1 + s′ + t′)2

= a00(−1)2B2
002(s

′, t′) = a00B
2
002(s

′, t′)

a10B
2
101(s, t) = a10(2)s(1− s− t) = a10(2)(1− s′)(−1)(1− s′ − t′)

= −2a10 ((1− s′ − t′) + t′) (1− s′ − t′)

= −2a10

(
(1− s′ − t′)2 + t′(1− s′ − t′)

)
= a10

(
−2B2

002(s
′, t′)−B2

011(s
′, t′)

)
a20B

2
200(s, t) = a20s

2 = a20(1− s′)2 = a20 ((1− s′ − t′) + t′)2

= a20

(
(1− s′ − t′)2 + 2t′(1− s′ − t′) + t′2

)
= a20

(
B2

002(s
′, t′) + B2

011(s
′, t′) + B2

020(s
′, t′)

)
a01B

2
011(s, t) = a01(2)t(1− s− t) = −2a01(1− t′)(1− s′ − t′)

= −2a01 ((1− s′ − t′) + s′) (1− s′ − t′)

= −2a01

(
(1− s′ − t′)2 + s′(1− s′ − t′)

)
= a01

(
−2B2

002(s
′, t′)−B2

101(s
′, t′)

)
a11B

2
110(s, t) = a11(2st) = 2a11(1− s′)(1− t′)

= 2a11 ((1− s′ − t′) + t′) ((1− s′ − t′) + s′)

= 2a11

(
(1− s′ − t′)2 + s′(1− s′ − t′) + t′(1− s′ − t′) + s′t′

)
= a11

(
2B2

002(s
′, t′) + B2

101(s
′, t′) + B2

011(s
′, t′) + B2

110(s
′, t′)

)
a02B

2
020(s, t) = a02t

2 = a02(1− t′)2 = a02 ((1− s′ − t′) + s′)2

= a02

(
(1− s′ − t′)2 + 2s′(1− s′ − t′) + s′2

)
= a02

(
B2

002(s
′, t′) + B2

101(s
′, t′) + B2

200(s
′, t′)

)
.

Summing up the terms on the left-hand side gives
∑

i,j,k=d−i−j bijB
d
ijk(s′, t′) = f . Writing f in

terms of the expressions on the right-hand side gives

f = a00B
2
002(s

′, t′) + a10

(
−2B2

002(s
′, t′)−B2

011(s
′, t′)

)
+

. . . + a02

(
B2

002(s
′, t′) + B2

101(s
′, t′) + B2

200(s
′, t′)

)
.

Grouping the coefficients of B2
ijk(s′, t′) together gives

f = (a00 − 2a10 + a20 − 2a01 + 2a11 + a02)B2
002(s

′, t′) +

. . . + a02B
2
200(s

′, t′) .

So b00 = a00 − 2a10 + a20 − 2a01 + 2a11 + a02 and so on through b20 = a02. A similar but longer

computation gives the linear equations for the cubic case.

70

3.8 Jigsaw Puzzle

The jigsaw puzzle module joins the contours found on individual triangular Bézier patches. For each

patch, we have a list of spline segments. A contour consists of a starting side of the triangle, an

ending side, and a list of control points for the spline curve. Starting and ending sides are numbered

0 to 2, unless the contour goes through a corner of the triangle, in which case a value from 3 to 5 is

stored. Contours forming a loop inside a patch have starting and ending sides set to -1. In addition,

for each triangular patch, we have an integer identifier, and a neighbor on each side.

The jigsaw puzzle routines maintain a hash table mapping triangle identifiers to a list

of puzzle sides that have not been matched up. Each puzzle side stores an edge identifier, the

neighboring triangle’s identifier, and pointers to the two puzzle corners. Puzzle corners are stored

in a separate list with a single integer per corner. The last number used as either a corner or edge

identifier is also stored.

As each triangle is contoured it is added to the puzzle using a routine called AddPiece.

Once all of the triangles are added, the FinishPuzzle routine cleans up any unresolved puzzle sides.

AddPiece is where most of the work is accomplished (Algorithm 3.2). Given a triangle T to add to

the puzzle, its sides are renumbered to either match adjacent triangles that are already contoured,

or a previously unused identifier. Corners get similar treatment.

Once the renumbering is complete, contours are merged. Edges that were already in the

puzzle are added to the list of identifiers to be merged and then removed from the puzzle. When

T has two neighbors already in the puzzle, there are two possibilities: either the neighbors agree or

disagree about the corner they have in common. In the first case, this is the last triangle incident to

that corner and the corner is added to the merge list. In the second case, this triangle is connecting

two triangles that were not locally connected, and the corners are renumbered to agree.

The MergeContours routine is responsible for connecting contours together. It first

scans through all contour ends looking for sides in the ToMerge list. It gathers together all ends

with the same side number that are within ε of each other into a star. Then ends in each star are

sorted according to their angle. The angle is determined from the vector connecting the end point

to the adjacent point in the contour control point list. The two ends that have adjacent angles and

an angle difference closest to π are connected. Combining ends with adjacent angles ensures that

we do not introduce contour crossings. Isolated points are detected and eliminated when they are

attached to other contours. Loops can form if the two ends of the contour are in the same star.

Otherwise, the two contours are reversed if necessary and then concatenated.

At the end, FinishPuzzle is run. This scans through the puzzle data structure and

collects a list of edge and corner identifiers that have yet to be merged. These are then processed

using MergeContours.

71

procedure AddPiece(TriContours, TriNeighbors, TriId):

Renumber = [-1, -1, -1, -1, -1, -1]

ToMerge = []

for Side in 0..2:

if TriNeighbors[TriId] in IdToPuzzleSide:

Neighbor has already been contoured

PuzzleTri = IdToPuzzleSide[TriNeighbors[TriId]]

for PuzzleSide in PuzzleTri :

if PuzzleSide.Neighbor is TriId :

break

Renumber [Side] = PuzzleSide.EdgeId

ToMerge.Append(PuzzleSide.EdgeId)

for Corner in Side:

if Renumber [Corner] is -1:

Renumber [Corner] = PuzzleSide.CornerId [Corner]

else if Renumber [Corner] is PuzzleSide.CornerId [Corner]:

This triangle completes this corner

ToMerge.Append(Renumber [Corner])

else:

This triangle connects two components

PuzzleSide.CornerId [Corner] = Renumber [Corner]

PuzzleTri.Remove(PuzzleSide)

else:

Neighbor has not been contoured yet

MaxId = MaxId+ 1

Renumber [Side] = MaxId

IdToPuzzleSide[TriId].PuzzleSide.EdgeId = MaxId

IdToPuzzleSide[TriId].PuzzleSide.Neighbor = TriNeighbors[TriId]

for Corner in 3..5:

if Renumber [Corner] is -1:

New corner

MaxId = MaxId+ 1

Renumber [Corner] = MaxId

Renumber(TriContours, Renumber)

MergeContours(PuzzleContours, TriContours, ToMerge)

Algorithm 3.2: Routine for adding a triangle to the jigsaw puzzle.

72

Linear Cubic

Execution time
1.8× 10−3

ε3/5
seconds

7.6× 10−3

6
√

ε
seconds

Function evaluations
27√

ε
f 5 f and 5 ∇f

Output vertices
10√

ε

20
7
√

ε

Maximum Error
ε

6.4
ε

10

Average Error
ε

11
ε

100

Table 3.1: Approximate asymptotic performance of contouring f◦ with linear and cubic interpolation.

3.9 Results

For our first test case, we contoured the circle that is the zero set of

f◦(x, y) =
(

10x− 5
2

)2

+
(

10y − 5
2

)2

− 4

on the unit square [0, 1]2. For comparison, we used both the triangle-square interpolant from Sec-

tion 3.4.5 and a simple linear interpolant. Both cases used binary triangle trees to adaptively sample

the function. These tests were run on a 450MHz Pentium II computer with 128 MB RAM running

Microsoft Windows NT. The error tolerance ε was set to values between 0.125 and 6× 10−8.

The performance of contouring with linear and cubic interpolation is summarized in Ta-

ble 3.1. For linear interpolation, most of the time was spent in AddPiece. As ε shrank, processing

time shifted from 75% connecting line segments and 25% adaptive meshing and sampling to 82%

and 18% respectively.

Since the triangle-square interpolant reproduces quadratic functions exactly, the adaptive

sampling stops immediately. The asymptotic behavior of the cubic case was dominated by the

curve-fitting procedure, which has excellent convergence. 99.3% of the processing time was spent

contouring individual cubics. The algorithm allocates most of the allowable error to interpolation

error since that results in the fewest function evaluations and triangles to contour. In this case there

was no interpolation error, so the final error was quite small. Cubic contouring in this case was

faster, more accurate, and output fewer vertices than linear contouring (Figure 3.32).

The remaining functions were tested with three variations of cubic interpolation:

Max Derivative A bound on the third derivative was used to control sampling.

Sampling The function was sampled at a point inside each element. If the value and gradient of

the function was too far from the interpolant, the element was subdivided.

73

(a) (b)

(c) (d)

Figure 3.31: f◦ has a single circular contour. (a) and (b): the linear approximation to that contour

found using a linear interpolant. It has 25 vertices, a maximum error of 0.00781, and required 168

function evaluations. The cubic approximation, in (c) and (d), has 19 control points, a maximum

error of 0.00159, and required 5 function and gradient evaluations. In both cases, ε was set to 0.0625.

The elements contoured from the adaptive mesh are shown in (a) and (c). No subdivisions were

necessary for the cubic interpolant; in (c), the light gray lines show the boundaries of the micro-

triangles from Sibson’s split-square interpolant. (d) the control polygon used for the cubic contour

approximation.

74

(a)

10

100

1000

10000

100000

10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

ou
tp

ut
ve

rt
ic

es

1/max error

linear
cubic

(b)

0.001

0.01

0.1

1

10

100

10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

se
co

nd
s

1/max error

linear
cubic

(c)

1

10

100

1000

10000

100000

10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

ev
al

ua
ti

on
s

1/max error

linear
cubic

Figure 3.32: These plots graph (a) the size of the control polygon, (b) the run-time in seconds, and

(c) the number of function and gradient evaluations, against one over the maximum error for linear

and cubic contouring of f◦.

75

Linear Max Derivative Sampling Cubic Precision
ε .05 .05 .05 .2

Max error .023 .00051 .0035 .0059
Evaluations 617 694 530 13

Seconds .13 .5 .3 .05
Output size 156 762 559 62

Table 3.2: Parameters for the contours of fθ in Figure 3.35

Cubic Precision The interpolant uses the cross-boundary derivative from the actual value of the

function’s gradient. This allows the interpolant to reproduce cubic functions exactly at the

expense of additional gradient evaluations. The error metric Sampling was used, without the

gradient term (Equations 3.1 and 3.2).

For linear interpolation, we used a variation of the sampling method. The difference be-

tween the function and the interpolant at the midpoint correctly estimates the quadratic error term.

This does not accurately predict the error because the cubic error term may be large even when the

quadratic term vanishes, so the quadratic error term was added to the element’s radius cubed times

a constant. The constant was set for each function to ensure the maximum error was less than the

specified ε.

Function fb(x, y) is bicubic, defined by c(x)c(y)+0.0125 with c(t) = 3(1−2t)(1−4t)(3−4t).

There are 8 contours of fb (Figure 3.20). The gradient is extremely small where two contours

approach each other. Examples of the resulting contours are shown in Figure 3.33. The performance

of the various algorithms is graphed in Figure 3.34.

Function fθ(x, y) is cubic, defined by 9(x− y)(25(x+ y− 1)2 +100(x− y)2− 8)+0.01. The

Cubic Precision technique did not subdivide the domain at all, since in that case the interpolant

reproduced the function exactly. Figure 3.35 shows the contours with the parameters in Table 3.2.

As expected, the Cubic Precision method also scales the best, as can be seen in Figure 3.36.

We have found the error estimate is more easily determined using cubic contouring. For

linear contouring, the value of the ad hoc coefficient of the cubic term was crucial to obtaining

the specified accuracy. This coefficient had to be set for each function, often by trial and error.

The cubic contouring method reproduces quadratic functions exactly and correctly estimates the

cubic and quartic terms of the error. The accuracy of the algorithm was largely insensitive to the

magnitude of the coefficient of the fifth order term — it served primarily to force the first subdivision.

These performance numbers could be improved by additional optimization. In particular,

the above times are based on the PPI algorithm with linear convergence. Also, the jigsaw puzzle

routine could cache the contours associated with each side. This would improve speed (at the expense

of memory usage) unless main memory is exhausted.

76

(a) (b)

(c) (d)

(e) (f)

Figure 3.33: Here fb was contoured using the Linear method (a)–(b), the Sampling method (c)–(d),

and the Cubic Precision method (e)–(f). The adaptive mesh is shown on the left; the control polygon

on the right.

77

(a)

100

1000

10000

100000

1e+06

1e+07

1 100 10000 1e+06 1e+08 1e+10 1e+12 1e+14

ou
tp

ut
ve

rt
ic

es

1/max error

Linear
Max Derivative

Sampling
Cubic Precision

(b)

0.1

1

10

100

1000

10000

1 100 10000 1e+06 1e+08 1e+10 1e+12 1e+14

se
co

nd
s

1/max error

Linear
Max Derivative

Sampling
Cubic Precision

(c)

100

1000

10000

100000

1e+06

1 100 10000 1e+06 1e+08 1e+10 1e+12 1e+14

ev
al

ua
ti

on
s

1/max error

Linear
Max Derivative

Sampling
Cubic Precision

Figure 3.34: These plots graph (a) the size of the control polygon, (b) the run-time in seconds, and

(c) the number of function and gradient evaluations, against one over the maximum error for linear

and cubic contouring of fb.

78

(a) (b)

(c) (d)

(e) (f)

Figure 3.35: Here fθ was contoured using the Linear method (a)–(b), the Max Derivative method

(c)–(d), and the Cubic Precision method (e)–(f). The adaptive mesh is shown on the left; the control

polygon on the right.

79

(a)

10

100

1000

10000

100000

1e+06

1 100 10000 1e+06 1e+08 1e+10 1e+12

ou
tp

ut
ve

rt
ic

es

1/max error

Linear
Max Derivative

Sampling
Cubic Precision

(b)

0.01

0.1

1

10

100

1000

1 100 10000 1e+06 1e+08 1e+10 1e+12

se
co

nd
s

1/max error

Linear
Max Derivative

Sampling
Cubic Precision

(c)

10

100

1000

10000

100000

1e+06

1 100 10000 1e+06 1e+08 1e+10 1e+12

ev
al

ua
ti

on
s

1/max error

Linear
Max Derivative

Sampling
Cubic Precision

Figure 3.36: These plots graph (a) the size of the control polygon, (b) the run-time in seconds, and

(c) the number of function and gradient evaluations, against one over the maximum error for linear

and cubic contouring of fθ.

80

Chapter 4

Contouring C1 functions of three

variables

Let f : [0, 1]3 → R be C1, and assume for simplicity that ∇f 6= 0 on the zero set C = {x ∈
[0, 1]3|f(x) = 0}. We wish to find the contours C, which will consist of surfaces contained in the

domain D = [0, 1]3 of f .

4.1 Previous work

A number of methods for 3D contouring have been developed. Many are based on “Marching cubes”

[59], which:

• assumes that the function is known on a regular grid,

• performs piecewise-linear interpolation along the edges of the grid to find the vertices of the

resulting mesh,

• uses a look-up table based on the signs of function values at cube corners to find out how to

triangulate the vertices on the edges of that cube, and

• outputs piecewise-linear contours with roughly uniform resolution (a few polygons per cube

intersecting the surface).

The marching cubes algorithm has several drawbacks:

• It is patented in the United States [23, 25].

• The look-up table has 22n

entries for contouring in dimension n. For three dimensions, that

means 256 cases to compute, which can be error prone. Luckily, this reduces to 14 cases after

taking symmetry into account. For higher dimensions, the number of cases is prohibitive.

81

or

Figure 4.1: If a square has alternating signs at the corners, there are two possible ways for marching

cubes to contour the interior of the square.

Figure 4.2: The ambiguity of contouring the faces of the cube can lead to meshes with gaps.

• It does not naturally support adaptive grids.

• Some cases in the table are ambiguous. This is a direct result of determining the contours

from the corner data rather than an approximation to the function.

The last point is particular cause for concern as it can result in meshes with gaps or holes in 3D

[68]. In 2D, the only ambiguous cases are where the corners alternate in sign (see Figure 4.1). In

the 3D case, consider a face shared between two cubes. If the signs of the corners alternate, the two

cubes should be consistent about how the face is contoured, otherwise gaps result, as in Figure 4.2.

The original formulation of marching cubes [59] gave a method for generating the table that was

inconsistent on faces, and so would output meshes that were not closed.

There are many ways of disambiguating these cases. In general there is a trade-off between

fidelity to the function values and simplicity. Gelder and Wilhelms [44] have an excellent review of

the different methods, including some statistics indicating how often various ambiguities arise. In

summary:

• The simplest fix is to make some convention, such as insisting that the negative (or positive)

corners are always in the same component. This allows a (carefully chosen) 256 entry table to

be used, and so admits a fast implementation [7].

• Wyvill et al. [113] used the average value of the corners of the face to decide which corners to

82

connect. This introduces many sub-cases which increases the implementation complexity but

only modestly affects speed.

• Neilson and Hamann [68] consider the contour topology induced from bilinear interpolation on

ambiguous faces. In this case the contours form a hyperbola, but once the topology is resolved

polygons are output as usual.

• A more sophisticated approach is to consider information from multiple cells. Gelder and

Wilhelms [44] compute a gradient estimate at each of the cell corners. This is then fed into

gradient consistency heuristics to determine the topology on ambiguous faces. It correctly

resolves the topology of quadratic functions.

Most of these methods require additional points in the interior of some cells to allow the contours

to be tessellated or to prevent intersecting contours.

There has been some research on marching cubes with adaptive meshes. Weber et al. [107]

have a method using adaptive meshes with cell-centered data. They use additional look-up tables

for the shapes (such as pyramids and triangular prisms) used to stitch between two resolution levels.

Bloomenthal [17] uses an octree to adaptively sample the function. He resolves ambiguous

cases by adding a vertex to the center of the cube, and then dividing the cube into 12 tetrahedra.

His polygonalization routine can deal with adjacent octree cells at different levels of refinement.

There has been some work on improving marching cubes in other directions. For example,

Ju et al. [56] not only use an octree to adaptively sample the function, but also make use of normal

data at intersection points. They generate a single vertex per cell instead of a vertex per edge,

greatly reducing the number of polygons output.

A simpler solution to the ambiguity problem is to use simplices instead of cubes. An n-

simplex is the convex hull of n + 1 points in Rn, that is, a triangle in 2D or a tetrahedron in 3D.

Using simplices has a number of consequences:

• There are only 2n+1 possible choices of signs at the vertices. Therefore a table-based approach

can use a table of size 8 in 2D, 16 in 3D, or 32 in 4D.

• Of those cases, only
⌈

n+2
2

⌉
are different after symmetry. In 3D, for example, either the vertices

are all the same sign, one is different, or two vertices have each sign.

• The contours produced are the exact contours of piecewise-linear interpolation on each tetrahe-

dron. There are no ambiguous cases, and the function that is actually contoured is represented

explicitly.

• If the data lies on a regular grid, there are several ways to generate a tetrahedral mesh with

vertices on the grid (e.g. Section 4.2).

• There are simpler means of adaptively sampling the function to contour.

83

The main disadvantage of using simplices is an increase in the number of polygons output. In

3D, this technique is called marching tetrahedra. Payne and Tog [70] first applied this technique

in order to visualize the subcortex of a brain from volumetric neurobiological data. They used a

decomposition of the unit cube into 5 tetrahedra — four associated with corners of the cube and

one contained in the interior of the cube.

Zhou et al. [114] have a hybrid technique that combines a tetrahedral decomposition of

a uniform cubical grid with bilinear interpolation on the faces. This technique is very similar to

Neilson and Hamann’s technique [68], but considers many fewer cases.k

Zhou et al. [115] gave a multiresolution framework for approximating volume data. They

produce an adaptive tetrahedral mesh that approximates volumetric data and use marching tetrahe-

dra to contour the results. Gerstner [45, 46] used an adaptive tetrahedral mesh to visualize several

(transparent) isosurfaces simultaneously.

Petersen et al. [74] uses a cubic interpolant to approximate a function, and then adaptively

computes a linear approximation within a small tolerance of the cubic. The resulting approximations

live on tetrahedra, which are easily contoured once the linear approximation is constructed. Longest-

edge bisection maintains a consistent mesh.

Witkin and Heckbert [109] gave a method for interactive manipulation of implicit surfaces.

They put a large number of mutually-repelling particles, called floaters, on the surface. These

were used as a dynamic visual representation of the surface and as handles on the surface that

could be directly manipulated. During editting pauses, the floaters were connected into a polygonal

representation for the surface. Hart [53] has empolyed Morse theory to enable and detect changes

in the surface topology in this interactive process.

Bottino et al. [19] described the shrinkwrapping technique for contouring an implicit sur-

face. They assumed that the function to contour was of the form FT (x) = f(x)−T where f(x) → 0

as |x| → ∞. This type of function often arises when modelling implicit surfaces. They start with a

large sphere that approximates the contours of Ft with t close to zero. They then move the vertices

of the sphere as they increase t up to T . The mesh undergoes topological changes when t passes

through any critical value of f .

Stander and Hart [97] explain how this technique is an application of Morse theory. They

give an alternate method called inflation that starts with a large value of t which they decrease

until they get the contour. They then address the problem of changing this mesh as the function is

interactively altered.

The technique described below also uses Morse theory to resolve the topology of a surface,

but by considering the critical points of a height function applied to the contour. This is similar to a

recent technique of Hart [54], where he considers the problem of unwanted blending when designing

implicit surfaces.

The algorithm given in this chapter samples the function adaptively and outputs a mesh

with higher sample density in regions of high curvature. It performs cubic interpolation of func-

84

tion values and gradients. Previous techniques almost all output linear (polygonal) contours. Our

algorithm outputs a mesh of cubic and quartic Bézier patches.

For the related problem of intersecting two surfaces, see Section 4.5 below.

4.2 Adaptive sampling and meshing

Given: f : D → R, we want C = f−1(0). We will, as before, first fit an adaptive piecewise-cubic

approximation to f . The three-dimensional analog of a triangular (2-simplex) Bézier patch is defined

on a tetrahedron (a 3-simplex). Thus our first goal is to create an adaptive conforming tetrahedral

mesh of the domain D, the unit cube [0, 1]3.

In 2D, a mesh is conforming as long as it has no hanging nodes, that is, having no vertices

in the interior of an element’s edge. This criteria is insufficient in higher dimensions. In 3D, a mesh

is conforming if every intersection of two tetrahedra is a face, edge, or vertex of the mesh.

Maubach [64] reviews several adaptive 3D meshes, including generalizations of red-green

triangulations, longest-edge-bisection meshes, and newest-vertex-bisection meshes.

Bey [15] generalized red-green triangulations to 3D, and later to arbitrary dimensions n ≥ 2.

The regular, or red, refinement rule divides a tetrahedron into 2d pieces, each congruent to the

original tetrahedron. To maintain a conforming mesh, a closure rule, called green refinement, is

used to connect different levels of refinement. The green closure rule greatly increases the number

of cases the algorithm needs to consider [83].

Tetrahedra bisection techniques have simpler algorithms for maintaining consistency, and

use fewer tetrahedrons due to their finer granularity. Rivara [80] has a generalization of longest-edge-

bisection. However, techniques using only the combinatorial topology instead of the edge lengths

result in fewer conjugacy classes and faster code. These are generalizations of binary triangle trees

(Section 3.3). The pioneering work by Bänsch [11] applies the technique to solving the three-

dimensional Navier-Stokes equations for fluid flow [10], and has been extensively refined [71, 57, 63,

115, 6]. We follow the approach of Maubach [63] since it has been generalized to higher dimensions,

is simple to implement, and has received extensive analysis [64].

Maubach [63] generalizes these techniques to any dimension n ≥ 2. The case n = 2 is

equivalent (except for vertex labels) to binary triangle trees. This technique implicitly labels the the

vertices of each simplex by keeping them in a specific order. He gives rules for subdividing groups

of tetrahedrons that share an edge that maintain consistency of the mesh. Unfortunately, there is

no known procedure for consistently ordering the vertices of all the simplices of a general simplicial

complex.

The initialization step creates a tetrahedralization of the unit n-cube with correct vertex

ordering. This procedure creates a cube out of n! n-simplices, one for every n-permutation. If π is

85

O

y

x

z

Figure 4.3: A simplicial complex for the cube consisting of 6 tetrahedra

a permutation of 1, . . . , n, let πi = (δ1, . . . , δn) ∈ Rn where

δj =

{
1 if π−1(j) ≤ i,

0 otherwise.

From this we define a simplex Tπ = T(π(1)...π(n)) by the ordered list of vertices π0, π1, . . . , πn. The

collection {Tπ} fpr all n-permutations π is a conforming simplicial mesh of the unit cube. For n = 3,

this gives six tetrahedra (Figure 4.3):

T(1 2 3) : (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)

T(1 3 2) : (0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 1)

T(2 1 3) : (0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 1, 1)

T(3 1 2) : (0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 1, 1)

T(3 2 1) : (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)

T(2 3 1) : (0, 0, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1) .

We assign each of these simplices a level of 0.

Maubach [64] derives a formula for Neighbor(Tπ, l), the neighbor to Tπ across the face

opposite Tπ’s lth vertex. We maintain an array of the n + 1 neighbors along with each simplex, and

this formula initializes these arrays for the base mesh above:

Neighbor(Tπ, l) =

{
Tπ◦σl

if 1 ≤ l ≤ n− 1,

0 if l = 0 or l = n.

Here, 0 represents no neighbor (the l face of Tπ is on the boundary), and σl is the transposition of

l and l + 1.

86

function Bisect(Simplex = (X0, . . . , Xn), Level):

K = n−Mod(Level, n)

Z = 1
2 (X0 + Xk)

Descendant0 = X0, X1, . . . , Xk−1, Z, Xk+1, . . . , Xn

Descendant1 = X1, . . . , Xk, Z, Xk+1, . . . , Xn

return [[Descendant0, Level+1], [Descendant1, Level+1]]

Algorithm 4.1: An n-dimensional simplex bisection algorithm

xk

x0

Figure 4.4: In 3D, the tetrahedra sharing an edge form a wheel.

Given a simplex x0, . . . , xn, the bisect operation divides it in two along the x0xk edge,

where k depends on the level of the simplex. This results in two simplices, one level more refined.

Pseudocode for the bisect operation is given in Algorithm 4.1.

The refine operation is like the split operation of binary triangle trees. It performs all

bisections of neighboring simplices in order to bisect a given simplex and maintain a conforming

mesh. Pseudocode is given in Algorithm 4.3. The first step is to find all simplices neighboring the

x0xk edge, refining them if they are at a coarser level (Algorithm 4.2). For n = 3, this neighborhood

will be a wheel of tetrahedrons (Figure 4.4). Each simplex is bisected, adding a single vertex to edge

x0xk. Finally, neighbor relationships are updated, using the relations from Maubach [64].

Maubach shows that repeated refinement does not result in simplices with small angles. In

fact, the resulting simplices fall into at most n equivalence classes, where equivalence is defined up

to rigid motion, reflection, and scaling.

Arnold et al. [6] give another tetrahedral bisection technique, based on tetrahedra with

marked edges. Certain markings give the same refinements as Maubach’s algorithm restricted to

three dimensions. Consistent markings can be build for any tetrahedral base mesh.

87

function RefineEdgeNeighborhood(Simplex):

Level = Simplex.Level

K = n−Mod(Level, n)

Front = { Simplex }
Simplices = { Simplex }
while Front 6= {}:

NewFront = {}
for Simplex in Front :

for I in {1, . . . , n} \ {K}:
Neighbor=Neighbor(Simplex, I)

if Neighbor not in Simplices:

while Neighbor.Level 6= Level:

Refine(Neighbor)

Neighbor=Neighbor(Simplex, I)

NewFront = NewFront ∪ {Neighbor}
Simplices = Simplices ∪ {Neighbor}

Front = NewFront

return Simplices

Algorithm 4.2: Algorithm to find the neighborhood of an edge to be bisected, and make sure all

simplices in that neighborhood are refined to the same level.

88

procedure Refine(Simplex):

K = n−Mod(Simplex.Level, n)

Neighborhood = RefineEdgeNeighborhood(Simplex)

for Simplex in Neighborhood :

Current = Bisect(Simplex)

Descendants[Simplex] = Current

Neighbor(Current [0], 0) = Current [1]

Neighbor(Current [1], K -1) = Current [0]

Neighbor(Current [0], K) = Neighbor(Simplex, K)

Neighbor(Current [1], K) = Neighbor(Simplex, 0)

for Simplex in Neighborhood :

for L in {1, . . . , n} \ {K}:
Neighbor(Descendants[Simplex][0], L) = DescendantsNeighbor(Simplex, L)[0]

for L in {0, . . . ,K− 2}:
Neighbor(Descendants[Simplex][1], L) = DescendantsNeighbor(Simplex, L+1)[1]

for L in {K + 1, . . . , n}:
Neighbor(Descendants[Simplex][1], L) = DescendantsNeighbor(Simplex, L)[1]

Replace(Neighborhood, Descendants)

Algorithm 4.3: An n-dimensional simplex refinement algorithm

89

4.3 Interpolation

To get a C1 interpolant with a single polynomial per element, a degree 9 polynomial and C4 data

at each vertex is required [3]. Luckily, there are generalizations of both Clough-Tocher and Powell-

Sabin to three-dimensions. These increase the number of micro-elements per macro-element but can

use much less data and a smaller degree spline to get the same continuity.

The first such generalization was given by Alfeld in 1984 [1]. In that technique, each

tetrahedron is divided into 4 quintic micro-elements. It uses C2 data to produce a C1 interpolant

with cubic precision.

Worsey and Farin described a technique in 1987 [110] that uses 12 cubic micro-elements

and C1 data to provide C1 continuity. Their technique uses (n+1)!
2 micro-elements in dimension n

and specializes to the Clough-Tocher scheme for n = 2.

Generalizations of Powell-Sabin interpolants have been given more recently [112]. For

C1 continuity, these require 24 quadratic micro-tetrahedra per macro-element. There are some

restrictions on the triangulation. If the circumcenters of each face of the triangulation lies in the

interior of that face, the circumcenters may be used as the split points for that triangulation.

There also exist multivariate rational finite element interpolants (see Hoschek and Lasser

[55], page 186). An extensive survey of interpolation techniques has been given by Alfeld [3].

As in the 2D case, we use Worsey and Farin’s cubic interpolant. The error analysis proceeds

in much the same way as before (Section 3.5). We need to consider the dfference of fijk = xiyjzk,

with i+j+k = 3, and the interpolant f̃ijk. For each monomial, we have a formula relating the differ-

ence in value and gradient at the subdivision point to the magnitude of the error max
∣∣∣fijk − f̃ijk

∣∣∣.
Finally, we take the maximum error for a given difference over the

(
5
2

)
= 10 different fijk.

4.4 Finding the contour surface

We have constructed a piecewise-cubic approximation f̃ to f on D. This approximation is given by a

collection of tetrahedrons tessellating D (specified by the location of each vertex of each tetrahedron),

the topology of those tetrahedrons (specified by an ordered four-tuple of adjacent tetrahedrons for

each tetrahedron), and a cubic polynomial on each tetrahedron (given by 10 + 6 + 3 + 1 = 20 Bézier

ordinates) that match up with C1 continuity. If f is given as a C1 piecewise-polynomial (of any

degree), the following techniques may be applied directly, without first approximating.

We would like to construct a C1 piecewise-cubic surface approximation to f̃−1(0), consisting

of Bézier patches. Below, we will not distinguish between f and f̃ . For ease of exposition, we first

consider the case where C does not intersect the boundary of the domain D.

90

Figure 4.5: Torus (x2 + y2 + z2 + r2
+ − r2

−)2 − 4r2
+(x2 + z2) = 0 with r− = 1, r+ = 2

4.4.1 Morse Theory

Handle bodies are a type of CW-complex used to construct manifolds explicitly [53, 65]. In the

context of 2 dimensional manifolds there are three types of handles that make up a handle body:

• 0-handles: these are represented by the neighborhood of a point. Adding a 0-handle introduces

a new component with a boundary topologically equivalent to a circle.

• 1-handles: these are represented by the neighborhood of a (curved) line segment. To add a

1-handle, one needs to specify where in the boundary-so-far to attach the two endpoints of the

handle, and how the handle twists. For orientable manifolds (such as any zero set), there will

never be an ‘odd twist’ as in a Möebius strip. If the two ends of a 1-handle attach to the same

component of the boundary, the resulting boundary has an additional component (one circle

becomes two). If the ends of a 1-handle attach to different components of the boundary, the

resulting boundary has one fewer component (two circles become one). In the latter case, if

the boundaries are to different components of the manifold, those components are joined as

well.

• 2-handles: these are represented by a disk. 2-handles are attached to a single component of

the boundary, closing it off.

Following Bott we will use the running example of a torus T oriented vertically, depicted

in Figure 4.5. T will be the defined by the zero set of the function f(x, y, z) = (x2 + y2 + z2 + r2
+ −

r2
−)2 − 4r2

+(x2 + z2) with 0 < r− < r+ (the Figure shows r− = 1, r+ = 2). One way of breaking it

91

Figure 4.6: Torus from Figure 4.5 divided into h−1([−3,−2]), h−1([−2,−1]), h−1([−1, 0]), h−1([0, 1]),

h−1([1, 2]), and h−1([2, 3]).

into four handles is shown in Figure 4.7. This shows a 0-handle at the bottom, two 1-handles in the

middle, and a 2-handle at the top.

Morse theory [65] provides an algorithm for constructing a handle body for a compact

manifold M given a Morse function: Let h be a C2 function from M to R. Since M is compact, the

image of h is compact and therefore contained in a finite closed interval. The critical points of h are

the points where the gradient ∇h is zero. At any critical point, h is approximated by a quadratic

form with symmetric matrix or Hessian d2h. A critical point is said to be degenerate if the Hessian

is singular. If h has no degenerate critical points, then h is said to be a Morse function on M . The

critical points of any Morse function are all isolated.

The index of a critical point is the number of negative eigenvalues. A critical value is the

image of any critical point.

For our torus example, consider h(t) = z, where t = (x, y, z) ∈ T . The critical points are

(0, 0,−r+ ± r−) and (0, 0, r+ ± r−). None of them are degenerate with this h. For h(t) = y there

are two circles of critical points x2 + z2 = r2
+ y = ±r−, all degenerate.

92

Figure 4.7: Torus from Figure 4.5 divided into a 0-handle at the bottom, two 1-handles in the

middle, and a 2-handle at the top.

The key observation of Morse theory [65] is that h−1([−∞, t]) only changes topologically

when t passes through a critical value (Figure 4.6). The change in topology is equivalent to attaching

a k-handle where k is the index of the critical point (Figure 4.7). If [t1, t2] does not contain any

critical values, h−1([t1, t2]) is topologically h−1(t1)× [t1, t2].

4.4.2 Applied Morse Theory

To construct C from f , the function to contour, we will first define h on D. We want h restricted

to C to be a Morse function. Choose any unit vector ~d3 and let h(d) =
〈
d, ~d3

〉
for all d ∈ D. Pick

~d1, ~d2 ∈ S2 to form an orthonormal basis with ~d3. Let fi = ∂f

∂ ~di
and fij = ∂2f

∂ ~di∂ ~dj
for i, j ∈ {1, 2, 3}.

h has critical points where ∇f is parallel to ~d3. They are found by solving:

f(x, y, z) = 0

f1(x, y, z) = 0

f2(x, y, z) = 0 .

We can solve this system for any Bézier spline f , using a modified Sherbrooke-Patrikalakis equation

solver, as in Section 3.7.

If the solutions are a discrete set of points, we would like them to be non-degenerate.

93

That is equivalent to having a nonzero value for f11f22 − f2
12. If not, we choose a new ~d3 (and

corresponding ~d1, ~d2). By Sard’s theorem [96], for almost all choices of ~d3, zero will be a regular

value of the function g = (f, f1, f2) : C → R3. We need to assume f3 is nonzero at the critical

points, that is ∇f(x, y, z) 6= 0 for all (x, y, z) where f(x, y, z) = 0. Otherwise C may not have the

topology of a manifold.

For our torus example, the y vector is a bad choice for ~d3, but anything else will work.

With ~d1, ~d2, ~d3 = ~x, ~y,~z, we solve

f(x, y, z) = (x2 + y2 + z2 + r2
+ − r2

−)2 − 4r2
+(x2 + z2) = 0

f1 = fx = 4x
(
x2 + y2 + z2 − r2

+ − r2
−
)

= 0

f2 = fy = 4y
(
x2 + y2 + z2 + r2

+ − r2
−
)

= 0 .

So either x = 0 or x2+y2+z2 = r2
++r2

−. Either y = 0 or x2+y2+z2+r2
+ = r2

−, but x2+y2+z2 ≥ 0

and r+ > r−, so y = 0. Substituting y = 0 and x2 + z2 = r2
+ + r2

− into f = 0 gives(
r2
+ + r2

− + r2
+ − r2

−
)2

= 4r2
+

(
r2
+ + r2

−
)

(
2r2

+

)2
= 4r4

+ + 4r2
+r2
−

4r4
+ = 4r4

+ + 4r2
+r2
−

0 = 4r2
+r2
− .

Since r+ and r− are both nonzero, this is impossible. We conclude x = 0 (in addition to y = 0) at

all critical points. Plugging x = 0 and y = 0 into f = 0 gives a fourth degree polynomial equation:(
z2 + r2

+ − r2
−
)2

= 4r2
+z2

z4 + r4
+ + r4

− + 2z2r2
+ − 2z2r2

− − 2r2
+r2
− = 4r2

+z2(
z2
)2 − (2r2

+ + 2r2
−
) (

z2
)

+
(
r4
+ + r4

− − 2r2
+r2
−
)

= 0 .

Applying the quadratic formula gives

z2 =

(
2r2

+ + 2r2
−
)
±
√(

2r2
+ + 2r2

−
)2 − 4

(
r4
+ + r4

− − 2r2
+r2
−
)

2

= r2
+ + r2

− ±
√(

r2
+ + r2

−
)2 − (r4

+ + r4
− − 2r2

+r2
−
)

= r2
+ + r2

− ±
√

r4
+ + 2r2

+r2
− + r4

− −
(
r4
+ + r4

− − 2r2
+r2
−
)

= r2
+ + r2

− ±
√

4r2
+r2
−

= r2
+ + r2

− ± 2r+r−

= (r+ ± r−)2 .

So z = r+ ± r− or z = − (r+ ± r−), giving critical points (0, 0,−r+ ± r−) and (0, 0, r+ ± r−) as

before. To classify the critical points, we need to compute the second derivatives:

94

fxx(x, y, z) = 4
(
x2 + y2 + z2 − r2

+ − r2
−
)

fyy(x, y, z) = 4
(
x2 + 3y3 + z2 + r2

+ − r2
−
)

fxy(x, y, z) = 8xy

fxx(0, 0, z) = 4
(
z2 − r2

+ − r2
−
)

fyy(0, 0, z) = 4
(
z2 + r2

+ − r2
−
)

fxy(0, 0, z) = 0 .

We can find local quadratic approximations at each critical point given the length of the

gradient. Since fx and fy are both zero, we only need

fz(x, y, z) = 4z
(
x2 + y2 + z2 − r2

+ − r2
−
)

fz(0, 0, z) = 4z
(
z2 − r2

+ − r2
−
)

.

We can now give a parametric form of the quadratic approximation to the surface C near

a critical point (x0, y0, z0). A quadratic approximation

f
(
(x0, y0, z0) + u ~d1 + v ~d2 + w ~d3

)
= wf3 + f11

u2

2
+ f12uv + f22

v2

2

to f follows from Taylor’s theorem since f = f1 = f2 = 0 at (x0, y0, z0). Setting f = 0 and solving

for w gives:

w =
f11u

2 + 2f12uv + f22

2f3
.

Rewriting this in parametric form gives the result:

C(u, v) = (x0, y0, z0) + u ~d1 + v ~d2 −
f11u

2 + 2f12uv + f22v
2

2f3

~d3 .

If we diagonalize the quadratic form

Hf =
−1
2f3

[
f11 f12

f12 f22

]
we get a change of basis that eliminates the uv term in the local parameterization. This also allows us

to determine the index of the critical point (the number of negative eigenvalues). We use CLAPACK

[5] routines for solving the eigensystem.

For the torus, the quadratic form is already diagonal:

Hf =
−1
2fz

[
fxx fxy

fxy fyy

]

=
−1

8z
(
z2 − r2

+ − r2
−
) [4

(
z2 − r2

+ − r2
−
)

0

0 4
(
z2 + r2

+ − r2
−
)]

=
−1

2z
(
z2 − r2

+ − r2
−
) [z2 − r2

+ − r2
− 0

0 z2 + r2
+ − r2

−

]
.

95

Figure 4.8: Quadratic approximations to the torus from Figure 4.5 at the four critical points

With r− = 1 and r+ = 2, the resulting approximations (depicted in Figure 4.8) are:

z1 = −x2

6
− y2

2
+ 3

z2 = −x2

2
+

y2

2
+ 1

z3 = +
x2

2
− y2

2
− 1

z4 = +
x2

6
+

y2

2
− 3 .

For an index 0 critical point, we get an elliptic paraboloid cup (local minimum). For an index 1

critical point, we get a hyperbolic paraboloid saddle. For an index 2 critical point, we get an elliptic

paraboloid cap (local maximum).

The next step is to connect these critical points with curves lying inside the manifold. To

do this efficiently, we will need some spatial data structure. Luckily, the adaptive mesh structure

can fill this role as well. We proceed as follows:

1. For every cup-type critical point, form the ε neighborhood approximation and insert it into

the spatial data structure.

2. Next, process every cap and saddle in increasing order of ~d3 coordinate. Each of these has

at least one eigenvalue corresponding to a direction where the contour is concave down. For

96

Figure 4.9: Steepest descent applied to the four critical points of the torus from Figure 4.5

each such, compute two curves {b+
i , b−i }, one going in the eigenvector direction and one going

in the opposite direction.

3. Each curve will follow the direction of steepest descent with respect to ~d3. That is, they will

follow the projection of the vector (0, 0,−1) onto the contour C. See Section 4.4.3 for details.

The curve is extended until it crosses the border of some patch already in our spatial data

structure.

4. Add (a possibly thickened version of) this curve to the spatial data structure. Continue with

the next curve or critical point.

Applying this to our torus example, we get a cup at the bottom, a 1-handle attached to

the front and back of the cup, another 1-handle attached to the left and right of the first 1-handle,

and a 2-handle attached to the top 1-handle and the left and right of the cup. See Figure 4.9.

Below, we will see that the steepest descent construction can always proceed until the curve

reaches a critical point. We add every local minimum to the spatial data structure before tracing

out the curves, then trace curves starting at critical points in increasing order of h. This ensures

the tracing procedure will always terminate by hitting something in the spatial data structure.

97

4.4.3 Steepest descent

The steepest descent direction v(x) at a point x is the projection of ~d3 onto the tangent space to C

at x. Thus v(x) = v0(x)
|v0(x)| where

v0(x) = ~d3 −∇f(x)

〈
∇f(x), ~d3

〉
|∇f(x)|2

.

If n(x) = ∇f(x)
|∇f(x)| , then v0(x) = ~d3 − n(x)

〈
n(x), ~d3

〉
. Note that this formula is defined everywhere

on the domain D of f except where v0(x) = 0, where ∇f is parallel to ~d3.

An exact solution to the differential equation dc
dt (x) = v(x) will stay in the manifold since

v(x) is in the tangent space of C for all x ∈ C.

Given a point x0 in C, so f(x0) = 0, we want to construct a cubic Bézier curve c(t) =∑3
i=0 ci

(
3
i

)
(1− t)3−iti with the following properties:

c(0) = x0 (4.1)

f(c(1)) = 0 (4.2)

c′′(0) good (4.3)

c′′(1) good (4.4)
c′(0)
|c′(0)|

= v (c(0)) (4.5)

c′(1)
|c′(1)|

= v (c(1)) (4.6)

c′(1
2)

|c′
(

1
2

)
|

= v

(
c

(
1
2

))
. (4.7)

Equation 4.1 simply gives the starting point for the curve. Equation 4.2 requires c to stay

within the contour C. Since our eventual goal is to compute C, it is worth enforcing this constraint

explicitly. Equations 4.5 through 4.7 require c to satisfy the differential equation and ensure that c

stays within the contour to first order.

In equations 4.3 and 4.4, c′′(t) is considered good at x = c(t) if c(t) stays within the

manifold to second order near x. This is only possible if equations 4.1, 4.2, 4.5, and 4.6 are already

satisfied.

Lemma 2 Given c : R → R3, and t ∈ R, let x = c(t). Then f(c(t+∆t)) will be O(∆t3) if f(x) = 0,
c′(t)
|c′(t)| = v(x), and |∇f(x)| 〈c′′(t), n(x)〉+ fvv(x) |c′(t)|2 = 0 where fvv = ∂2f

∂2v(x) .

Proof: We first approximate f near x = c(t) with a second-order Taylor series in the n(x), v(x),

b(x) = n(x)× v(x) Frenet-Serret coordinate system [31]

f(x + ∆x) = f (x + ∆xnn(x) + ∆xvv(x) + ∆xbb(x))

98

≈ f(x) + 〈∆x,∇f(x)〉+
1
2
∆xT


fnn fnv fnb

fnv fvv fvb

fnb fvb fbb

(x) ∆x

= 0 + |∇f(x)| ·∆xn +
1
2
(
fnn∆x2

n + fvv∆x2
v + fbb∆x2

b

)
+ fnv∆xn∆xv + fnb∆xn∆xb + fvb∆xv∆xb

We then approximate c(t) with a second order Taylor series in the same coordinate system:

c(t + ∆t) ≈ c(t) + ∆tc′(t) +
1
2
∆t2c′′(t)

= x + ∆t|c′(t)|v(x) +
1
2
∆t2[〈c′′(t), n(x)〉n(x)+

〈c′′(t), v(x)〉 v(x)+

〈c′′(t), b(x)〉 b(x)]

= x + ∆t|c′(t)|v(x) +
1
2
∆t2 [c′′nn(x) + c′′vv(x) + c′′b b(x)]

So c(t + ∆t) ≈ x + ∆x with

∆x =



∆t2

2 c′′n

∆t|c′(t)|+ ∆t2

2 c′′v

∆t2

2 c′′b


and

f(c(t + ∆t)) ≈ f(x + ∆x)

≈ |∇f(x)|1
2
∆t2c′′n +

1
2
fnn

(
∆t2

2
c′′n

)2

+
1
2
fvv

(
∆t|c′(t)|+ ∆t2

2
c′′v

)2

+
1
2
fbb

(
∆t2

2
c′′b

)2

+ fnv
∆t2

2
c′′n

(
∆t|c′(t)|+ ∆t2

2
c′′v

)
+ fnb

∆t2

2
c′′n

∆t2

2
c′′b

+ fvb

(
∆t|c′(t)|+ ∆t2

2
c′′v

)
∆t2

2
c′′b

= |∇f(x)|1
2
∆t2c′′n +

1
2
fvv (∆t|c′(t)|)2 + O(∆t3)

=
1
2
∆t2

(
|∇f(x)|c′′n + fvv|c′(t)|2

)
+ O(∆t3)

so as long as |∇f(x)| c′′n + fvv(x) |c′(t)|2 = 0, f(c(t + ∆t)) is zero to second order.

Note that we have 12 degrees of freedom to choose the ci and equations 4.1–4.7 express 12

(= 3 + 1 + 1 + 1 + 2 + 2 + 2) constraints. Equation 4.1 immediately determines c0, allowing us to

reduce this to 9 degrees of freedom with 9 constraints.

99

Our end goal is to contour the manifold, so the conditions 4.1–4.6 are the most important

to satisfy. At any point x0, the differential equation determines v0 = v(x0). The local quadratic

approximation to C near x0 and a step size δ, we can extrapolate a position for x1 = c(1) = c3.

However, x1 will typically not lie exactly in C, so we project using

P (x1) = x1 −∇f(x1)
f(x1)

|∇f(x1)|2
.

This may need to be iterated if x1 starts far from C. Alternatively, we can add terms that account

for the second and third derivative of f . Since f is locally a cubic polynomial, this will give P (x1)

in C in one step.

Once we have x1 satisfying f(x1) = 0, we can then solve 4.1–4.6 directly. We will use the

last condition, 4.7, to determine when the step size δ is too large.

Let k = |c′(0)| and l = |c′(1)|. By equation 4.5, c′(0) = kv(c(0)) and c1 = c0 + c′(0)/3 =

c0+kv(c0)/3. By equation 4.6, c′(1) = kv(c(1)) and c2 = c3−c′(1)/3 = c3−lv(c3)/3. Differentiating

the Bézier formula for c(t) twice gives us

c′′(0) = 6c0 − 12c1 + 6c2

c′′(1) = 6c1 − 12c2 + 6c3 .

Given c0, c3, v(c0), and v(c3), these second derivatives are linear functions of k and l. From Lemma 2

c must satisfy:

|∇f(c(0))| 〈c′′(0), n(c(0))〉+ fvv(c(0)) |c′(0)|2 = 0

|∇f(c(1))| 〈c′′(1), n(c(1))〉+ fvv(c(1)) |c′(1)|2 = 0 .

We know c({0, 1}), so |∇f(c({0, 1}))|, n(c({0, 1})), and fvv(c({0, 1})) are determined. Since c′′(0)

and c′′(1) are linear functions of k and l, the above equations reduce to:

a0kk + a0ll + b0k
2 = 0

a1kk + a1ll + b1l
2 = 0

for some constants a∗ and b0,1. This reduces to a single quartic equation that we can efficiently solve

with the spline root solver from Section 2.6.1 (cf. SplineForStrands from Section 3.6.1).

All that remains is the choice of δ. We would like to choose δ as large as possible subject

to three conditions:

1. c(t) should stay in the same component of the contour C. We inspect the value of f at x 1
2
,

the midpoint of the current segment, to check for this eventuality.

2. c(t) should be within ε of C for all t. This condition can be verified by comparing
∣∣∣f(x 1

2
)/∇f(x 1

2
)
∣∣∣

to ε.

100

3. c(t) should head monotonically downwards. This condition can be verified by projecting the

Bézier control polygon of c(t) onto the ~d3 axis. If the control points are monotonically de-

creasing, so is c(t). Otherwise, the first and second derivative of
〈
c(t), ~d3

〉
are computed as

1D Bézier splines (of degrees 2 and 1 respectively). If the second derivative has no zeros, or

the first derivative evaluated at the zero of the second derivative is negative, then
〈
c(t), ~d3

〉
is monotonically decreasing. This follows from the requirement that c(t) head downwards at

both t = 0 and t = 1.

Due to the accuracy of the interpolating spline used to construct c(t), δ = O(7
√

ε) can satisfy the

second condition. We initialize δ conservatively with 5
√

ε. Then we double δ after any step when

conditions 1–3 are satisfied, and halve δ otherwise. The steepest descent procedure is therefore:

Procedure: Given error tolerance ε, initial point x0, and initial vector v0 where f(x0) = 0 and

v0 = v(x0) if v(x0) exists. Set δ = 5
√

ε.

1. Extrapolate from x0 a distance δ using v0 and the curvature of C to find x1.

2. Project x1 onto the manifold by applying P until f(x1)
|∇f(x1)| is small.

3. Compute c(t) with c(0) = x0, c′(0) parallel to v0, c(1) = x1 and satisfying conditions 4.1–4.6

above.

4. Find x 1
2

= c(1
2).

5. If
c′(1

2)
|c′(1

2)|
is far from v

(
x 1

2

)
or f

(
x 1

2

)
/
∣∣∣∇f

(
x 1

2

)∣∣∣ is large, divide δ in half and repeat.

6. Otherwise, output the control points for c(t), double δ, set x0 = x1, v0 = v(x1), and repeat.

4.4.4 Skeleton refinement

Our algorithm relies on the following.

Claim: The curves {b±i } will divide the zero set into surfaces, each topologically equivalent to a

disk.

Proof: Consider a component B of the complement C \ ∪b±i . Its highest point cannot be a saddle

point, since we could take a small step away from a saddle perpendicular to the boundary and get

higher. Therefore, the highest point must be a cap. From Morse theory, we know the cap was a

disk attached along a circle in the skeleton. We have subdivided the cap into four by shooting four

curves along steepest descent directions, but each piece is still topologically a disk.

In the exact solution to the steepest descent problem, every curve segment b±i would start

(highest point) at a cap or a saddle and end (lowest point) at either a cup or a saddle. Since the

integrator is imperfect, and the handles have been thickened, the segments may end on the boundary

of any lower handle.

101

The last step will be to fill in the skeleton with triangular Bézier patches. In order to meet

the error bounds, we need to refine the skeleton until the patches will be small enough that the error

tolerance are satisfied.

We measure the length of the edges from the steepest descent process using
∫

K(s) · ds,

where edges are parametrized by arc-length s and K(s) is the curvature. The result is nondimen-

sional, and insensitive to scale. To reduce the error, pick the longest edge under this metric, and

bisect it. Since the edge resulted from the steepest-descent process, we need to split it with a curve

running horizontally. The procedure of Section 4.4.3 computes horizontal curves if the definition

of v(x) is changed in Equations 4.5 through 4.7. The end result is a horizontal edge added to the

collection of vertical edges.

We continue to split the longest edge (horizontally if vertical, vertically otherwise) until the

longest edge is shorter than the relative error threshold. If we ensure every edge satisfies
∫

K(s)·ds <

L, then we know a unit sphere would be subdivided until at least 2π/L edges are required to go

around any great circle. In this way, we ensure that the sampling density of the surface C is

proportional to its curvature.

In the case where f−1(0) does intersect the boundary of the domain, we need to first

compute that intersection. This is done using the 2D cubic contour finder, applied to the faces

of tetrahedrons on the boundary. Every minimum or maximum (with respect to the direction ~d3)

in these boundary curves has to be classified, as above. The only differences are: f1 and f2 will

usually be nonzero and will determine the steepest descent directions, not Hf , and we never follow

a direction that points out of the tetrahedron.

4.4.5 Filling in the Skeleton

Finally we take a net of cubic Bézier spline curves and find Bézier patches that fill in the skeleton.

Peters [72] has given a method of doing this with cubic and quartic patches that have no cusps and

fit together smoothly.

Consider a loop in the skeleton consisting of n cubic splines. Quartic patches are needed

when n > 4 or when a certain symmetry constraint is not met. The n sided hole is filled with n

triangular patches (Figure 4.10). The outer coordinates are determined from the net of curves. The

next layer inside is determined from the C1 and consistency criteria. The remaining coordinates are

determined, working from the outside in, using weighted averages of the coordinates already known.

Peters proves that the resulting Bézier patches match with C1 continuity; for surfaces, C1

means continuity of the oriented tangent plane.

4.4.6 The 3D contouring algorithm

Here is a summary of the 3D contouring algorithm:

1. Pick a random unit vector ~d3.

102

6 sides3 sides

Figure 4.10: Peters’ patch generation algorithm fills n-sided holes with n triangular patches.

2. Choose ~d1 and ~d2 to form an orthonormal basis with ~d3.

3. Solve the system:

f(x, y, z) = 0

f1(x, y, z) = 0

f2(x, y, z) = 0

to get the critical points P . If the solutions are not a discrete collection of points, go back to

step 1.

4. Compute and store f11, f22, and f12 for each element of P .

5. Compute f11f22 − f2
12 for each element of P . If any of them are zero, go back to step 1.

6. Compute and store f3 for each element of P . If any of them are zero, return an error.

7. Find the eigenvalues and eigenvectors of

Hf =
−1
2f3

[
f11 f12

f12 f22

]

for each element of P . Classify them by index.

8. Contour f restricted to the boundary of D. Add every local minimum and maximum (according

to ~d3) to P (assuming they are not already in P). Initialize the skeleton and spatial data

structure with the curves connecting the minimums and maximums.

9. Add every index 0 element of P to the skeleton. Add the quadratic neighborhood of those

elements to the spatial data structure.

10. Apply the steepest descent procedure to every index 1 and 2 element of P . The skeleton now

accurately represents C.

103

11. Refine the skeleton until the error metric is satisfied.

12. Compute a collection of patches for every loop in the skeleton.

13. Return the patches along with the adjacency information.

4.5 Extension to surface intersection

The intersection of surfaces C1, C2 ⊂ R3 is generically a collection of space curves. Surface inter-

section algorithms find and parametrize these space curves by functions ci : [0, 1] → R3. Pratt

and Geisow [76] have a survey of solutions to this problem. Different techniques are needed if the

surfaces are parametrized or if the surfaces are given as the contours of a function.

First, consider parametrized surfaces given by F,G : [0, 1]2 → R3. In this case, the goal

is to find u, v, s, t ∈ [0, 1] such that F (u, v) − G(s, t) = 0. The answer will be in the form of a

parametrized curve (u(τ), v(τ), s(τ), t(τ)) : [0, 1] → [0, 1]4. The actual intersection is then given by

F (u(τ), v(τ)) or equivalently G(s(τ), t(τ)).

Grandine and Klein [49] have generalized their technique for finding contours in the plane

(Section 3.6.1) to find the intersection of parametrized surfaces. They work in the 2D u, v space

in order to simplify the problem. There are a few complications not present in the standard 2D

contouring problem:

• Contours can begin and end due to s and t crossing 0 or 1. These contours have an endpoint

in the interior of the u, v space.

• The points where the contours begin and end satisfy a 3× 3 system of polynomial equations.

There are eight of these corresponding to the eight faces of the unit hyper-cube [0, 1]4.

• The critical points satisfy a 4× 4 system of polynomial equations.

• Many of the tests, such as deciding if a point is a minimum or maximum, have a different

form.

Müllenheim [67] derives and analyzes an iterative procedure for finding intersection points.

He shows that the method has quadratic convergence, and then applies the algorithm to get a

sequence of intersection points and unit tangent vectors. These are then interpolated using Hermite

interpolation.

Barnhill and Kersey [12] present a marching method which traces intersection curves in

the direction of tangent vectors at intersection points. Intersection curves are approximated by

piecewise-linear functions. Bajaj et al. [8] present a similar method that applies to surfaces given

either parametrically or as the zero set of a function, using a third-order Taylor approximation with

variable-length steps. The extrapolated points are improved with Newton iteration, and special care

is taken for singular points.

104

Second, suppose the two surfaces are each the zero set of a given function. Let D ⊂ R3 be

the domain, for example the unit cube [0, 1]3. Given f = (f1, f2) : D → R2, the desired zero set is

f−1((0, 0)) = f−1
1 (0) ∩ f−1

2 (0). The techniques from this chapter may be used to compute f−1
1 (0).

The end result is a triangle mesh along with a Bézier patch for each element. The Bézier patches

define maps from a canonical triangle T = {(s, t)|s, t ≥ 0, s + t ≤ 1} into D ⊂ R3. We can compose

this map with f2 to get a map from the triangle mesh into R. The 2D algorithm from Chapter 3

now applies directly, using the computed mesh as a base mesh that may be further refined.

105

Chapter 5

Scattered data interpolation

The contouring algorithms presented in Chapters 2–4 require a function f to contour. Often

the value (or value and gradient) of f is known at some finite number of prescribed points, {Pi}. In

some cases, the Pi may form a regular grid or have some other structure, but in general they will be

placed arbitrarily. For example, measurements of oil deposits are only given where holes have been

bored. Similarly, atmospheric measurements may only be known at specific weather stations.

Alfeld [3] has a survey of interpolation techniques that apply in multiple dimensions. Franke

[42] has reviewed and compared the performance of many 2D interpolation methods. A more recent

survey is [86], that considers methods that do not require triangulating the data sites. Below is a

summary of a few of the more relevant methods. All of these methods apply in all dimensions d ≥ 1.

5.1 Finite element interpolation

One approach is to triangulate the domain and then use an interpolant such as Clough-Tocher or

Powell-Sabin (Section 3.4) on each triangle. Typically the data sites can be triangulated using either

a Delaunay triangulation [27, 91] or a data-dependent triangulation [78].

The Delaunay triangulation of the set {Pi} is a tessellation of the convex hull of the {Pi}
consisting of triangles. The only vertices of this triangulation are the Pi. The Delaunay triangulation

can be defined in a number of equivalent ways:

• Define the Voronoi tile, or Thiessen polyhedron, of Pi to be the set of points closer to Pi than

Pj for any j 6= i. Define the Voronoi tessellation, also known as the Dirichlet tessellation

or the Thiessen tessellation, to be the polygonal mesh consisting of the Voronoi tiles of the

Pi. The edges of the Voronoi tessellation are subsets of the perpendicular bisectors separating

pairs of data sites. Two data sites whose Voronoi tiles share an edge are said to be natural

neighbors. The Delaunay triangulation is the dual of the Voronoi tessellation (Figure 5.1).

The edges of a Delaunay triangulation connect natural neighbors. There is a triangle in the

106

Figure 5.1: Given a fixed set of points, the Voronoi tessellation (gray lines) is dual to the Delaunay

triangulation (dashed lines).

Delaunay triangulation corresponding to every vertex of the Voronoi tessellation.

• A Delaunay triangulation is also the triangulation of the Pi satisfying the circumcircle criteria.

That is, the circumscribed circle of every triangle in the triangulation contains no data site in

its interior.

• A Delaunay triangulation is the triangulation of the Pi that is globally optimal under the max-

min angle criteria. That is, of all possible triangulations of the Pi, the Delaunay triangulation

is the one with the largest minimum angle — where ties are resolved by looking at the second

smallest angle, and so forth.

Since this construction gives us a piecewise-polynomial approximation to the function, the

adaptive mesh stage of the contouring techniques of Chapters 2–4 may be skipped. Finding a

Delaunay triangulation costs O(N log N) for N data sites. Once the triangulation has been found,

interpolation is very efficient [33].

This technique can be generalized to higher dimensions. Given a tetrahedralization of the

data sites, any of the interpolants of Section 4.3 can be built. Delaunay triangulations also extend

to higher dimensions.

One disadvantage of this technique is that moving the data sites can cause an abrupt change

in the interpolant if it causes the triangulation to change.

107

5.2 Radial basis functions

Finite element interpolation methods are efficient to compute since each interpolant uses a small

local subset of the data. However, a higher quality interpolant can be constructed by global analysis

of the function values at all data sites. One family of such methods uses Radial Basis Functions,

whose value depends only on the distance to a prescribed point, so Ri(x) = R(|x − Pi|). The

interpolant f̃ is built with a radial basis function at each data site Pi plus a polynomial

f̃(x) =
N∑

i=1

αiR (|x− Pi|) +
m∑

j=0

βjpj(x) .

The αi and βj are determined by solving the linear system:

f̃(Pi) = f(Pi) ∀1 ≤ i ≤ N∑
i

αN
i=1pj(Pi) = 0, ∀1 ≤ j ≤ m .

The last conditions ensure that the interpolant reproduces every polynomial in the span of the pj

exactly.

Different choices of radial basis functions R and the polynomials pj lead to different in-

terpolants. Hardy multiquadrics [52] and Duchon thin plate splines [32] are the best-known radial

basis interpolants. Hardy uses R(r) = (c2 + r2)±1/2 for some constant c that depends on the sep-

aration between data sites. The thin plate splines are defined by R(r) = r2k log r for some integer

k. There are many other choices for R [86]. Some lead to poorly conditioned linear systems, when

N is large. Even when the system is well-conditioned, it can be fairly time-consuming and require

a lot of memory to solve.

Recent research [102, 14, 13, 20] describes how generalize the fast multipole method [50] to

efficiently compute radial basis functions. These involve some method of computing the aggregate

effect of clusters of data sites, and then arranging those clusters in a spatial hierarchy.

Turk and O’Brien [105] used radial basis splines to morph between models in 2D and 3D.

They explain how the same techniques can be used to reconstruct a 3D surface from several (not

necessarily parallel) slices. Savchenko et al. [85] discuss interpolating between slices as well as the

reconstruction of a surface from scattered points.

Turk et al. [104] address construction of a function whose contours pass through a specified

collection of points in 3D. Designed as a modelling tool, they allow several types of constraints on

the resulting surface, such as specifying normals at the input points.

5.3 Natural neighbor interpolation

Sibson [93] developed an interpolation technique called natural neighbor interpolation. This tech-

nique uses Voronoi tessellations (Section 5.1), to decide how to interpolate data points. Given a

108

x

Figure 5.2: To evaluate the original natural neighbor interpolant at a point x, add x to the Voronoi

tessellation for the data sites. The tile formed by adding x consists of area that used to belong to

tiles from the original tessellation. The value at x is found from a weighted average of the original

data sites; the weight is proportional to the area of the overlapping tiles.

Voronoi tessellation of the data sites, two sites are called natural neighbors if their Voronoi tiles

share a face. This is equivalent to the two sites being connected by an edge in the Delaunay trian-

gulation.

Assume we have a Voronoi tessellation {ti} of {Pi}. Consider adding a point x to this

Voronoi tessellation (Figure 5.2). Let tx be the Voronoi tile of x in the new tessellation. The area

|tx| of tx was part of tiles from {Pi}. Define the natural neighbor weight Wi(x) of Pi to be the area

of overlap between tx and ti divided by the area of tx:

Wi(x) =
|tx ∩ ti|
|tx|

.

These weights sum to one, and express x =
∑

i PiWi(x) as a convex combination of the data sites

Pi. Thus the Wi(x) define Sibson coordinates, similar to barycentric coordinates.

Given function values Fi at the Pi, the C0 natural neighbor interpolant is

N0(x) =
∑

i

FiWi(x) .

This interpolant reproduces linear functions exactly, and reduces to piecewise-linear interpolation

in the 1D case. It is C∞ except at points x where the number of natural neighbors of x changes,

109

Figure 5.3: The Prussian helmet effect (black curve) of mixing first-order approximations (gray

lines). We would prefer the dashed curve.

on the circumcircles of the Delaunay triangulation of the data sites {Pi} [37]. It is C0 at the data

sites. It is local since Wi(x) is zero except when x and Pi are natural neighbors.

A straightforward implementation of natural neighbor interpolation constructs the Delau-

nay triangulation of the data sites in O(n log n) operations. Each evaluation of the interpolant

takes O(log n) time, though this can be improved if consecutive evaluations are nearby. This can be

reduced to O(n) and O(1) time, respectively, if the data sites are distributed quasi-uniformly [86].

A C1 interpolant requires the gradient Vi at each data site. Let Ti : Rd → R be the tangent

plane function x 7→ 〈x− Pi, Vi〉.
The simplest C1 method uses the natural neighbor weights to mix the tangent planes

x → Fi + Ti(x) around each Pi. The mixing function mi(x) should have value 1 at Pi, value 0 at Pj

for j 6= i, a 0 gradient at every Pj , and
∑

i mi(x) = 1. Our interpolant x 7→
∑

i (Fi + Ti(x))mi(x)

then has at least linear precision. Standard choices such as Wi(x)2/
∑

j Wj(x)2 or [93]:

mS
i (x) =

Wi(x)

|x− Pi|
∑

j
Wj(x)
|x−Pj |

suffer from the Prussian helmet effect [93] (Figure 5.3): The interpolant must pass through the

intersection of the tangent planes and thus cannot reproduce the dashed line in the figure.

Sibson [93] constructed a C1 modification to the C0 natural neighbor interpolant that does

not suffer from the Prussian helmet effect. His approach combines the C1 interpolant

HS
1 (x) =

∑
i

(Fi + Ti(x))mS
i (x) =

∑
i

Wi(x)
|x−Pi| (Fi + Ti(x))∑

j
Wj(x)
|x−Pj |

,

and the C0 interpolant N0 to reproduce a spherical quadratic (the span of linear functions and xT x),

yielding

N1(x) =
Sa(x)N0(x) + Sb(x)HS

1 (s)
Sa(x) + Sb(x)

110

where

Sa(x) =
∑

i Wi(x)|x− Pi|∑
i Wi(x)/|x− Pi|

,

Sb(x) =
∑

i

Wi(x)|x− Pi|2 .

Sibson’s N1 interpolant is undefined at data sites x = Pi, but its limit as x → Pi is Fi. Its gradient

at Pi is the specified gradient Vi, it reproduces spherical quadratics, it reduces to Hermite cubic

interpolation in the 1D case, and the interpolant varies C1 smoothly as the data sites move.

Another C1 method of natural neighbor interpolation is due to Farin [37]. Sibson coor-

dinates Wi(x) are interpreted as barycentric coordinates in a Bézier simplex. The dimension of

the simplex is the number of nonzero Wi(x) minus one. Each vertex of the simplex is placed at a

natural neighbor of x. For linear Bézier simplices, this reduces to the standard C0 natural neighbor

interpolant. Farin uses cubic Bézier simplices to achieve C1 continuity and quadratic precision.

The ordinates of the simplex are determined in a way similar to the nine-parameter interpolant

(Section 3.4.1). This method reduces to piecewise-cubic interpolation in 1D.

5.4 New Natural Neighbor Interpolant

We take a different approach to solving the Prussian helmet problem. Consider 1D Hermite inter-

polation, with the Pi in increasing order of x-coordinate. Restricting to the interval [Pi, Pi+1], and

letting L = Pi+1 − Pi, t = (x− Pi)/L, the interpolant is given by a sum of cubic polynomials:

Fi(2t3 − 3t3 + 1) + Vi(Lt)(1− t)2 + Fi+1(3t3 − 2t3) + Vi+1(Lt2)(t− 1) .

Rewriting this in terms of Ti(x) = Vi(x− Pi) = ViLt and Ti+1(x) = Vi+1(x− Pi+1) = Vi+1L(t− 1)

gives:

Fi(2t3 − 3t3 + 1) + Ti(x)(1− t)2 + Fi+1(3t3 − 2t3) + Ti+1(x)(t2) .

By symmetry the basis function for Fi is the reflection about t = 1/2 of the basis function for Fi+1:

for example replacing t by 1− t in 3t3 − 2t3 gives

3(1− t)2 − 2(1− t)3 = 3− 6t + 3t2 − 2 + 6t− 6t2 + 2t3 = 1 + 2t3 − 3t2 .

The basis functions for Ti and Ti+1 are similarly symmetric. However, Hermite interpolation uses

different basis functions for the function values and the tangent-line functions. Using the same

weight for Fi as for Ti(x) produces the Prussian helmet effect.

Since Wi(x) and Wi+1(x) restricted to x ∈ [Pi, Pi+1] are exactly 1− t and t, Wi(x)2 is an

obvious mixing function for Ti(x).

Our new C1 natural neighbor interpolant is defined by:

NJ(x) =
∑

i

(
Fimi(x) + Ti(x)Wi(x)2

)

111

where:

mi(x) =
J(Wi(x))∑
j J(Wj(x))

for any C1 function J(t) satisfying:

J(0) = J ′(0) = 0

J(t) > 0 for t ∈ (0, 1] .

(For example, J(t) = t2.) The
∑

j J (Wj(x)) in the denominator of mi(x) ensures that
∑

i mi(x) = 1.

Furthermore, since Wi(Pj) = δij ,

mi(Pk) =
J(Wi(Pk))∑
j J(Wj(Pk))

=
J(δik)∑
j J(δjk)

=
J(δik)
J(1)

= δik .

So setting x = Pk in NJ(x) gives

NJ(Pk) =
∑

i

(
Fimi(Pk) + Ti(Pk)Wi(Pk)2

)
=

∑
i

(
Fiδik + Ti(Pk)δ2

ik

)
= Fk · 1 + Tk(Pk) · 12 +

∑
i 6=k

(
Fi · 0 + Ti(Pk) · 02

)
= Fk + 0 + 0 = Fk .

Therefore, NJ(x) interpolates the given function values at the Pk.

Observe that
∑

j J(Wj(x)) > 0 for all x, and so the denominator in mi(x) is never 0. So

NJ(x) is a weighted sum of continuous functions, and is therefore continuous. In fact, NJ(x) is C1

for all dimensions. From the properties of Wi, it is sufficient to check that the directional derivative
∂NJ

∂v (x) = (NJ)v(x) is continuous at x = Pj for all unit vectors v ∈ Rd. This is somewhat tricky to

verify since (Wi)v(Pi) does not exist. Let D(x) =
∑

j J(Wj(x)) be the denominator of mi(x). Using

limits, the continuity of Wi, J , and Ti, and Wi(Pj) = δij , we compute:

D(Pi) =
∑

j

J(Wj(Pi)) =
∑

j

J(δij) = J(1)

lim
x→Pi

Dv(x) = lim
x→Pi

∑
j

J ′(Wj(x))(Wj)v(x)

= lim
x→Pi

J ′(Wi(x))(Wi)v(x) +
∑
j 6=i

J ′(Wj(x))(Wj)v(x)


since for j 6= i, J ′(Wj(Pi)) = J ′(0) = 0 and (Wj)v continuous at Pi

= lim
x→Pi

J ′(Wi(x))(Wi)v(x)

(mJ
i)v(x) =

J ′(Wi(x))(Wi)v(x)D(x)− J(Wi(x))Dv(x)
D(x)2

∀x 6∈ {Pj}

lim
x→Pj

(mJ
i)v(x) = lim

x→Pj

J ′(Wi(x))(Wi)v(x)D(x)− J(Wi(x))Dv(x)
D2(x)

112

= lim
x→Pj

J ′(Wi(x))(Wi)v(x)J(1)− J(Wi(x))Dv(x)
J(1)2

= lim
x→Pj

J ′(Wi(x))(Wi)v(x)J(1)− J(Wi(x))J ′(Wj(x))(Wj)v(x)
J(1)2

= lim
x→Pj

J ′(δij)(Wi)v(x)J(1)− J(δij)J ′(1)(Wj)v(x)
J(1)2

.

If i 6= j, this becomes,

lim
x→Pj

J ′(0)(Wi)v(x)J(1)− J(0)J ′(1)(Wj)v(x)
J(1)2

= 0

since J ′(0) = J(0) = 0 and the remaining terms are bounded. If i = j we get:

lim
x→Pi

J ′(1)(Wi)v(x)J(1)− J(1)J ′(1)(Wi)v(x)
J(1)2

= 0 .

Either way, limx→Pj (m
J
i)v(x) = 0. By Taylor’s theorem [82],

lim sup
h→0

|mJ
i (Pj + vh)−mJ

i (Pj)|
|h|

= lim sup
h→0

|(mJ
i)v(Pj + yhv)|

where yh ∈ (0, h) depends on h. Since the right-hand side is zero, we find that (mJ
i)v exists and is

zero. Thus
∑

i Fimi(x) is C1 and has gradient zero at every Pi.

The Ti(x)Wi(x)2 term satisfies:

lim
x→Pj

(
Ti(x)Wi(x)2

)
v

= lim
x→Pj

(
(Ti)v(x)Wi(x)2 + Ti(x)(Wi)v(x)Wi(x)

)
= lim

x→Pj

Wi(x) (〈Vi, v〉Wi(x) + Ti(x)(Wi)v(x))

If i 6= j then Wi(x) → 0 and the right-hand expression is bounded so the limit is 0. If i = j, then

lim
x→Pi

Wi(x) (〈Vi, v〉Wi(x) + Ti(x)(Wi)v(x)) = 〈Vi, v〉+ lim
x→Pi

Ti(x)(Wi)v(x)

and the last term is zero since Ti(x) → 0 and (Wi)v(x) is bounded. Summing the terms of (NJ)v

we see that (NJ)v(Pi) exists and is equal to 〈Vi, v〉, and conclude (∇NJ)(Pi) = Vi.

For d = 1, there are explicit formulas for the interpolant. For x in the interval [Pi, Pi+1],

Wj(x) = 0 unless j = i or j = i + 1. In that interval

NJ(x) = Fimi(x) + Ti(x)Wi(x)2 + Fi+1mi+1(x) + Ti+1(x)Wi+1(x)2

=
FiJ(Wi(x)) + Fi+1J(Wi+1(x)

J(Wi(x)) + J(Wi+1(x))
+ Ti(x)Wi(x)2 + Ti+1(x)Wi+1(x)2 .

Let t = (x− Pi)/(Pi+1 − Pi). Then Wi(x) = 1− t and Wi+1(x) = t so

NJ(x) =
FiJ(1− t) + Fi+1J(t

J(1− t) + J(t)
+ Ti(x)(1− t)2 + Ti+1(x)t2 .

The simplest choice for J(t) is t2, which makes NJ(x) into a piecewise-rational-quadratic interpolant

of the Fi. To get cubic Hermite interpolation, set J(t) = 3t2 − 2t3. Then J(1 − t) + J(t) =

113

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.5 0 0.5 1

N
J
(x

)

x

J(t) = t2

J(t) = 3t2 − 2t3

Figure 5.4: The basis functions for NJ depend on the choice of J(t). Graphs of NJ with J(t) = t2

and J(t) = 3t2 − 2t3 are shown.

Method Error with 33 samples Error with 100 samples
N0 .289 .173
N1 .112 .021
NJ with J(t) = t2 .199 .144
NJ with J(t) = 3t2 − 2t3 .186 .107
NJ2 .143 .084

Table 5.1: Error between various natural neighbor interpolants and F .

(1 + 2t3 − 3t2) + (3t2 − 2t3) = 1, so the denominator drops out. The numerator becomes the

standard Hermite basis functions. Basis functions for NJ with these two choices of J(t) are shown

in Figure 5.4.

To test these methods, we apply them to Franke’s function [42] (Figure 5.5):

F(x, y) =
3
4
e−

(9x−2)2+(9∗y−2)2

4 +
3
4
e−

(9∗x+1)2

49 − (9∗y+1)2

10 +
1
2
e−

(9∗x−7)2+(9∗y−3)2

4 − 1
5
e−(9∗x−4)2−(9∗y−7)2 .

We sample this function at the 33 sites Pi ∈ [0, 1]2 shown in Figure 5.6. From these samples

build each of the natural neighbor interpolants, as shown in Figures 5.7(a) through 5.10(a). Our

implementation uses Shewchuk’s code TRIANGLE [91] to find Voronoi tessellations. The error

shown in Figures 5.7(b) through 5.10(b) is the difference between the interpolant and the original

function. N1 performed the best. Replacing J(Wi) with Wi

|x−Pi| (following Sibson [93]) gave an

interpolant NJ2 that performed better than NJ without the complexity of N1 (Table 5.1).

114

Figure 5.5: Franke’s test function, F(x, y)

s

s

s

s

s

ss
s

s

ss

s

ss
s

s

s
s s

s

s
s

s
s ss

s

ss

s

s
s

s
Figure 5.6: The 33 sample sites include the corner points and points on the boundary.

115

(a)

(b)

Figure 5.7: The C0 natural neighbor interpolant (a) has corners at the data sites. The error N0−F
is shown in (b).

116

(a)

(b)

Figure 5.8: The C1 natural neighbor interpolant (a) has spherical quadratic precision. The error

N1 −F is shown in (b).

117

(a)

(b)

Figure 5.9: NJ (a) with J(t) = t2. The error NJ −F is shown in (b).

118

(a)

(b)

Figure 5.10: NJ (a) with J(t) = 3t2 − 2t3. The error NJ −F is shown in (b).

119

(a)

(b)

Figure 5.11: NJ2 (a) employs the mS
i (x) mixing function. The error NJ2 −F is shown in (b).

120

5.5 Gradient estimation

There are two situations where gradient estimation is useful. Given function values at a fixed set

of data sites, gradient values at each site are necessary for natural neighbor interpolation. In this

situation, global methods can be appropriate since they yield the highest quality derivatives [42].

Unfortunately, global methods are also the most computationally intensive and can be impractical

for large data sets. Global methods can often be converted into local methods by applying them to

a subset of points, often the nearest k points {x1, . . . xk} to the data site x0 in question. Sometimes

a weighting factor is introduced when making a method local: (R− |xi − x0|)2 and
(

R−|xi−x0|
R|xi−x0|

)2

are common choices (for R ≥ |xk − x0|).

Gradient estimation is also useful when f can be sampled at arbitrary points, but the

gradient of the function is unavailable. Under these circumstances, we would like to estimate the

gradient using the values at nearby data sites while the function is being adaptively sampled. The

gradient determines whether further subdivision is necessary, so a local method can be used to

compute the gradient at the new point alone. The gradients can be recomputed once the adaptive

sampling is complete.

Alfeld [3] has a short summary of gradient estimation methods. Franke [42] contrasted

several gradient estimation schemes to evaluate finite-element interpolation schemes. Stead [98]

compared several ad hoc local schemes. Here we review a few representative techniques.

One global method is to perform a global optimization to reduce some energy functional.

Renka and Cline [79] minimize the clamped elastic plate functional over all Clough-Tocher inter-

polants (Section 3.4.3) of a given triangulation. The resulting linear system was ill-conditioned, so

iterative methods for solving the system converge slowly. Alfeld [2] minimized the integral of some

derivative (typically f2
xx + 2f2

xy + f2
yy or f2

xxx + 3f2
xxy + 3f2

xyy + f2
yyy) over all possible piecewise-

quintic interpolants (Section 3.4.2) over the triangulation. This results in a sparse, positive-definite

linear system assembled out of the contribution from each element. Alfeld employs a standard direct

method for solving this system.

Another global method is to build a global interpolant of the data, and then differentiate

to find the gradient. Stead [98] found that using Hardy multiquadric interpolantation (Section 5.2)

of the 20 closest points to each data site performed very well on a variety of data. This method,

however, does not have any polynomial precision.

Such techniques are commonly used to perform local gradient estimation. One local ap-

proximation is constructed at each data site, usually chosen to minimize a weighted least-squares

error measurement. Different techniques use different spaces of approximations and different weight

functions. Stead [98] tested two of these schemes. In one, a planar least squares approximation

[41] to the closest 9 points {x0, . . . , x8} to a data site x0 is found. In the other, a quadratic least

squares approximation [42] to the closest 11 points {x0, . . . , x10} to a data site x0 was used. In both

cases, the data site itself was included in the collection of points. The furthest point was used to

121

set R = |xk − x0| in the weight function wR,x0(xi) = (R− |xi − x0|)2. Stead found the quadratic

approximation gave very good results for simpler surfaces.

Sibson [93] used a weighting system that used the natural neighbor machinery. Let the

natural neighbor weight from Pi to Pj be defined by Wji = Wj(Pi) after Pi is removed from the

set of data sites. There are always at least d + 1 natural neighbors to Pi in dimension d, which is

sufficient to define a spherical quadratic passing through Pi. Of course, there may be more natural

neighbors, in which case we can use the weighted least squares fit given by Vi = H−1
i yi, where

Hi =
∑

j

Wji
(Pj − Pi)(Pj − Pi)T

|Pj − Pi|2
and

yi =
∑

j

Wji
(Pj − Pi)(Fj − Fi)

|Pj − Pi|2
.

This is a particularly efficient choice when combined with a natural neighbor interpolant.

122

Chapter 6

Conclusions and future work

6.1 Future work

There are a few areas where the algorithms presented here could be further developed or extended.

6.1.1 Robust topology

We can contour a function f with any of the previous techniques. However, small changes in the

input can lead to large changes in the resulting curve. When the zero plane passes through a saddle

point, the intersection is two crossing lines (Figure 6.1(a)). The contouring algorithm from Chapter 3

avoids creating contours that cross, and will output either Figure 6.1(b) or (c). That decision is very

sensitive to round-off error and small changes in the function.

One approach to solving this problem is to contour two functions

f± = f ± ε |∇f |

instead of one. Given f and ∇f we can approximate ∇f± by

∇f±(x, y) = ∇f(x, y)± ε∇ |∇f(x, y)|

= ∇f ±
(∣∣∣∇f

(
x +

ε

2
, y
)∣∣∣− ∣∣∣∇f

(
x− ε

2
, y
)∣∣∣ ,

(a) (b) (c)

Figure 6.1: Small changes to a function at a saddle point can change the contour topology.

123

∣∣∣∇f
(
x, y +

ε

2

)∣∣∣− ∣∣∣∇f
(
x, y − ε

2

)∣∣∣) .

The actual contours of f will lie between the contours of f+ and f−. The topology of f+

will differ from f− if there is an ambiguous situation with the contours of f . Note that there is a

limit to how well we can resolve contours near roots where the gradient is 0, such as the saddle point

example given above. In this situation, f± may be more than ε apart.

6.1.2 Minimizing C2 discontinuity

In the implementation given above, the cross-boundary derivative is found by either linear interpola-

tion from the vertices or sampling the function. It is possible, however, to compute a cross-boundary

derivative that reproduces cubic polynomials exactly without additional samples of the function.

Mann [60] has a technique for minimizing the cross boundary C2 discontinuity for Clough-

Tocher interpolation. If the data is consistent with a cubic, the resulting interpolant is C2 and

reproduces that cubic. Minimizing the C2 discontinuity of the interpolant also reduces the curva-

ture discontinuity of the resulting contours at element boundaries (the current method is curvature

continuous everywhere else). For applications that measure the curvature of the contour, this is an

important feature. The error metrics would have to be updated for this new interpolant.

6.1.3 Contouring piecewise-C1 functions

Distance functions, and signed distance functions, are an important example of functions we would

like to contour. The derivative of a distance function has unit magnitude almost everywhere. The

discontinuities of the derivative of a distance function in 1D are where the derivative jumps between

+1 and −1. In 2D the distance function to a polygon will consist of pieces of cones and planes. The

Gaussian curvature of a 2D distance function is very near zero except at derivative discontinuities.

One approach that would work with a large class of piecewise-C1 functions is to assume we

have some sort of bound on the second derivative. If we ever notice the second derivative is larger,

we can then break the patch into two pieces. We can extrapolate from the two pieces to find the

intersection: a C1 contouring problem!

For the particular case of distance functions, we could instead use an interpolant that

reproduces distance functions exactly. Tsai [103] has a method for approximating a distance function

on a regular grid using C0 data. With C1 data at each vertex, we can expect to get more accurate

contours.

For a particular distance function f and point x, f(x) and∇f(x) (where |∇f(x)| is assumed

to be 1) determine the point on the nearest contour to x, z(x) = x−f(x)∇f(x). Consider an element

in our mesh, in 2D this would be a triangle or square. We would like to reconstruct f from f(xi)

and ∇f(xi) for the vertices xi of the element. In practice, we may not have enough information to

reconstruct f , so we will construct an approximation f̃ .

124

Unfortunately, it is difficult to make this construction local. Given a triangle ABC, the

point closest to C may be closer to the midpoint of AB than points closest to A and B. This means

that there is a trade off between locality and accuracy in any scheme hoping to reproduce distance

functions.

One simple approach is to combine the distance functions to z(xi) for each of the three

corners. To combine two unsigned distance functions f1 and f2, set f(x) = min {f1(x), f2(x)}. To

combine two signed distance functions f1 and f2, take:

f(x) =

{
f1(x) if |f1(x)| < |f2(x)|,
f2(x) otherwise.

To make this local, the contribution from corners could be blended away near the opposite side.

6.2 Contributions

The main contributions of this thesis are:

• a modular framework of contouring algorithms (Section 2.1, Section 2.5, and in particular,

Algorithms 2.1 and 2.2),

• implementations of several contouring algorithms,

• zero gradient and ε-panel handling for Grandine-Klein contouring (Section 3.6.1),

• a modification to Sherbrooke-Patrikalakis for quadratic convergence that is relatively fast (Sec-

tion 3.7.2),

• a three-dimensional spline contouring algorithm based on Morse theory (Section 4.4), and

• a new C1 scattered-data interpolant using natural neighbor interpolation (Section 5.4).

In addition to the above, there have been several minor contributions:

• modifications to contouring algorithms for robustness (Section 2.6.2),

• a method of factoring out a root of a 1D spline (Section 2.6.3),

• a simple, fast convex-intersection algorithm (Section 2.6.4),

• how to combine Clough-Tocher’s and Sibson’s techniques for interpolation over binary triangle

trees (Section 3.4.5),

• an extensive error analysis of my 1D and 2D interpolation (Sections 2.4 and 3.5),

• the optimism error estimate (Section 3.5),

125

• an adaption of Grandine-Klein contouring to cubic splines (Section 3.6.1),

• an adaption Sherbrooke-Patrikalakis simultaneous solver to cubic splines (Section 3.7),

• a method, given a cubic Bézier patch, of determining the ordinates for an adjacent patch

representing the same cubic (Section 3.7.3), and

• an algorithm for integrating vector fields in sub-manifolds of R3 using spline collocation (Sec-

tion 4.4.3).

6.3 Conclusion

There are several themes that recur throughout this dissertation. The most obvious is contouring

with the combination of an adaptive mesh, a cubic interpolant, and a technique for finding the

contours of a spline. Another is the pervasive use of splines which led to the re-use of techniques

to solve many different problems. We have found these algorithms to be quite robust and general

purpose. While the details of contouring a spline vary in different dimensions, the same key idea is

used to resolve the topology. In both 2D and 3D, topological transitions occur at the boundary and

at the critical points of the height function. It is these themes that tie this work together.

126

Bibliography

[1] P. Alfeld. A trivariate Clough-Tocher scheme for tetrahedral data. CAGD, 1:169–181, 1984.

[2] Peter Alfeld. Derivative generation from multivariate scattered data by functional minimiza-

tion. Computer Aided Geometric Design, 2:281–296, 1985.

[3] Peter Alfeld. Scattered data interpolation in three or more variables. In Tom Lyche and

Larry L. Schumaker, editors, Mathematical Methods in Computer Aided Geometric Design,

pages 1–33. Academic Press, 1989.

[4] Eugene L. Allgower, Kurt Georg, and Rick Miranda. The method of resultants for computing

real solutions of polynomial systems. SIAM Journal on Numerical Analysis, 29(3):831–844,

1992.

[5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-

baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for

Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999.

[6] Douglas N. Arnold, Arup Mukherjee, and Luc Pouly. Locally adapted tetrahedral meshes

using bisection. SIAM Journal on Scientific Computing, 22(2):431–448, 2001.

[7] Ehud Artzy, Gideon Frieder, and Gabor T. Herman. The theory, design, implementation and

evaluation of a three-dimensional surface detection algorithm. Computer Graphics and Image

Processing, 15:1–24, 1981.

[8] C.L. Bajaj, C.M. Hoffmann, R.E. Lynch, and J.E.H. Hopcroft. Tracing surface intersections.

CAGD, 5:285–307, 1988.

[9] Randolph E. Bank, Andrew H. Sherman, and Alan Weiser. Refinement algorithms and data

structures for regular local mesh refinement. Scientific Computing, pages 3–17, 1983.

[10] Eberhard Bänsch. An adaptive finite-element strategy for the three-dimensional time-

dependent Navier-Stokes equations. Journal of Computational and Applied Mathematics, 36:3–

28, 1991.

127

[11] Eberhard Bänsch. Local mesh refinement in 2 and 3 dimensions. Impact of Computing in

Science and Engineering, 3:181–191, 1991.

[12] R. E. Barnhill and S. N. Kersey. A marching method for parametric surface/surface intersec-

tion. CAGD, 7:257–280, 1990.

[13] R. K. Beatson, W. A. Light, and S. Billings. Fast solution of the radial basis function inter-

polation equations: Domain decomposition methods. SIAM Journal on Scientific Computing,

22(5):1717–1740, 2000.

[14] R. K. Beatson and G. N. Newsam. Fast evaluation of radial basis functions: Moment-based

methods. SIAM Journal on Scientific Computing, 19(5):1428–1449, 1998.

[15] Jürgen Bey. Tetrahedral grid refinement. Computing, 55(4):355–378, 1995.

[16] P. Bézier. Numerical Control, Mathematics and Applications. Wiley, 1972.

[17] Jules Bloomenthal. Polygonization of implicit surfaces. CAGD, 5:341–355, 1988.

[18] Wolfgang Böhm, Gerald Farin, and Jürgen Kahmann. A survey of curve and surface methods

in CAGD. CAGD, 1:1–60, 1984.

[19] Andrea Bottino, Wim Nuij, and Kees van Overveld. How to shrinkwrap through a critical

point: an algorithm for the adaptive triangulation of iso-surfaces with arbitrary topology. In

Implicit Surfaces ’96, pages 53–72, Oct 1996.

[20] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and

T. R. Evans. Reconstruction and representation of 3D objects with radial basis functions. In

SIGGRAPH 2001, pages 67–76. ACM, Aug 2001.

[21] A. J. Chorin. Flame advection and propagation algorithms. Journal of Computational Physics,

35:1–11, 1980.

[22] A. J. Chorin. Curvature and solidification. Journal of Computational Physics, 58:472–490,

1985.

[23] Harvey E. Cline and William E. Lorensen. System and method for the display of surface

structures contained within the interior region of a solid body. US Patent #4,710,876, Jun

1985.

[24] R. W. Clough and J. L. Tocher. Finite element stiffness matrices for the analysis of plate

bending. In 1st Conference on Matrix Methods in Structural Mechanics, pages 525–545, 1965.

[25] Carl R. Crawford. Minimization of directed points generated in three-dimensional dividing

cubes method. US Patent #4,885,688, Nov 1987.

128

[26] M. Daniel and J. C. Daubisse. The numerical problem of using Bézier curves and surfaces in

the power basis. CAGD, 6:121–128, 1989.

[27] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational geometry. In

Algorithms and Applications. Springer-Verlag, Heidelberg, second edition, 2000.

[28] Carl de Boor, Klaus Höllig, and Malcom Sabin. High accuracy geometric Hermite interpolation.

CAGD, 4:269–278, 1987.

[29] P. de Casteljau. Outillage méthodes calcul. Technical report, André Citroën Automobiles S.

A., 1959.

[30] James Demmel. On condition numbers and the distance to the nearest ill-posed problem.

Numerische Mathematik, 51(3):251–289, July 1987.

[31] Manfredo Perdigao do Carmo. Differential Geometry of Curves and Surfaces. Prentice Hall

College Div., 1976.

[32] J. Duchon. Splines minimizing rotation invariant semi-norms in Soblev spaces. In W. Schempp

and K. Zeller, editors, Constructive Theory of Functions of Several Variables. Lecture Notes

in Mathematics, volume 571, pages 85–100. Springer, 1977.

[33] H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location in a monotone subdivision.

Comm. ACM, 29:669–679, 1986.

[34] Gershon Elber and Myung-Soo Kim. Geometric constraint solver using multivariate rational

spline functions. In Proceedings of the sixth ACM symposium on Solid modeling and applica-

tions, pages 1–10. ACM Press, 2001.

[35] K. J. Falconer. A general purpose algorithm for contouring over scattered data points. Tech-

nical report, National Physical Laboratory, Teddington, Middlesex, England, 1971.

[36] Gerald Farin. Triangular Bernstein-Bézier patches. CAGD, 3:83–127, 1986.

[37] Gerald Farin. Surfaces over Dirichlet tessellations. CAGD, 5:281–292, 1990.

[38] R. T. Farouki and V. T. Rajan. On the numerical condition of polynomials in Bernstein form.

CAGD, 4:191–216, 1987.

[39] R. T. Farouki and V. T. Rajan. Algorithms for polynomails in Bernstein form. CAGD, 5:1–26,

1988.

[40] A. R. Forrest. Interactive interpolation and approximation by Bézier polynomials. Computer

Journal, 15:71–79, 1972.

129

[41] R. Franke. Smooth surface approximation by a local method of interpolation at scattered

points. Technical Report NPS 53-78-002, Naval Postgraduate School, Monterey, CA, 1978.

[42] Richard H. Franke. Scattered data interpolation: test of some methods. Mathematics of

Computation, 38(157):181–200, Jan 1982.

[43] Qingxiang Fu. The intersection of a bicubic Bézier patch and a plane. CAGD, 7:475–488,

1990.

[44] Allen Van Gelder and Jane Wilhelms. Topological considerations in isosurface generation.

ACM Transactions on Graphics, 13(4):337–375, Oct 1994.

[45] Thomas Gerstner. Fast multiresolution extraction of multiple transparent isosurfaces. In Data

Visualization ’00, pages 35–44. Springer, 2001.

[46] Thomas Gerstner. Fast multiresolution extraction of multiple transparent isosurfaces. Com-

puters & Graphics, 26(2):219–228, 2002.

[47] Thomas A. Grandine. Computing zeroes of spline functions. CAGD, 6:129–136, 1989.

[48] Thomas A. Grandine. Applications of contouring. SIAM Review, 4(2):297–316, 2000.

[49] Thomas A. Grandine and Frederick W. Klein IV. A new approach to the surface intersection

problem. CAGD, 14:111–134, 1997.

[50] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of Computa-

tional Physics, 73:325–348, 1987.

[51] B. Grünbaum and G. Shephard. Tilings and Patterns. W. H. Freeman, 1987.

[52] R. L. Hardy. Multiquadric equations of topography and other irregular surfaces. Journal of

Geophysical Research, 76:1905–1915, 1971.

[53] John C. Hart. Morse theory for implicit surface modeling. In Hans-Christian Hege and Konrad

Polthier, editors, Mathematical Visualization, pages 257–268. Springer-Verlag, Oct 1998.

[54] John C. Hart. Using the CW-complex to represent the topological structure of implicit surfaces

and solids. In Implicit Surfaces ’99, pages 107–112. Eurographics/SIGGRAPH, Sep 1999.

[55] Josef Hoschek and Dieter Lasser. Fundamentals of Computer Aided Geometric Design. A

K Peters, 1993. Originally published in 1989 by B. G Teubner, Stuttgart, under the title

Grundlagen der geometrischen Datenverarbeitung. Translated by Larry L. Schumaker.

[56] Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual contouring of Hermite data.

ACM SIGGRAPH, pages 339–346, 2002.

130

[57] Igor Kossaczký. A recursive approach to local mesh refinement in two and three dimensions.

Journal of Computational and Applied Mathematics, 55:275–288, 1994.

[58] F. F. Little. Convex combinations surfaces. In R. E. Barnhill and W. Böhm, editors, Surfaces

in Computer Aided Geometric Design. North-Holland, 1983.

[59] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3D surface

construction algorithm. ACM SIGGRAPH Computer Graphics, 21(4):163–169, 1987.

[60] Stephen Mann. Cubic precision Clough-Tocher interpolation. CAGD, 16:85–88, 1999.

[61] Dinesh Manocha and James Demmel. Algorithms for intersecting parametric and algebraic

curves I: simple intersections. ACM Transactions on Graphics, 13(1):73–100, January 1994.

[62] S. Marlow and M.J.D. Powell. A Fortran subroutine for plotting the part of a conic that is

inside a given triangle. Technical Report R-8336, Atomic Energy Research Establishment,

Harwell, United Kingdom, 1976.

[63] Joseph M. Maubach. Local bisection refinement for n-simplicial grids generated by reflection.

SIAM J. Sci. Comput., 16(1):210–227, 1995.

[64] Joseph M. Maubach. The efficient location of neighbors for locally refined n-simplicial grids.

In Proc. 5th Int. Meshing Roundtable, pages 137–153. Sandia Nat. Lab., Oct 1996.

[65] J. Milnor. Morse Theory, volume 51 of Annals of Mathematics Studies. Princeton University

Press, 1963.

[66] W. F. Mitchell. Unified Multilevel Adaptive Finite Element Methods for Elliptic Problems.

PhD thesis, U.I. at Urbana CS Dept., 1988. Report No. UIUCDCS-R-88-1436.

[67] Gregor Müllenheim. Convergence of a surface/surface intersection algorithm. CAGD, 7:415–

423, 1990.

[68] Gregory M. Neilson and Bernd Hamann. The asymptotic decider: Removing the ambiguity in

marching cubes. IEEE Visualization, pages 83–91, 1991.

[69] Stanley Osher and Ronald P. Fedkiw. The Level Set Method and Dynamic Implicit Surfaces.

Springer Verlag, 2002.

[70] Bradley A. Payne and Arthur W. Tog. Surface mapping brain function on 3D models. IEEE

Computer Graphics and Applications, 10(5):33–41, 1990.

[71] Ronaldo Marinho Persiano, João Luiz Dihl Comba, and Valéria Barbalho. An adaptive tri-

angulation refinement scheme and construction. In Proceedings of the VI Sibgrapi (Brazilian

Symposium on Computer Graphics and Image Processing), Oct 1993.

131

[72] Jörg Peters. Smooth mesh interpolation with cubic patches. Computer-Aided Design, 22:109–

120, 1990.

[73] Carl S. Petersen. Adaptive contouring of three-dimensional surfaces. CAGD, 1:61–74, 1984.

[74] Carl S. Petersen, Bruce R. Piper, and Andrew J. Worsey. Adaptive contouring of a trivariate

interpolant. In Gerald E. Farin, editor, Geometric Modeling: Algorithms and New Trends,

pages 385–395. SIAM, 1987.

[75] M. J. D. Powell and M. A. Sabin. Piecewise quadratic approximations on triangles. ACM

Transactions on Mathematical Software, 3:316–325, 1977.

[76] M. J. Pratt and A. D. Geisow. Surface/surface intersection problems. In J. A. Gregory, editor,

The Mathematics of Surfaces, volume 1, pages 117–142. Claredon Press, 1986.

[77] Albrecht Preusser. Algorithm 671 — FARB-E-2D: Fill area with bicubics on rectangles —

a contour plot program. ACM Transactions on Mathematical Software, 15(1):79–89, March

1989.

[78] Ewald Quak and Larry L. Schumaker. Cubic spline fitting using data dependent triangulations.

CAGD, 7:293–301, 1990.

[79] R. L. Renka and A. K. Cline. A triangle based C1 interpolation method. Rocky Mountain

Journal of Mathematics, 14:334–351, 1984.

[80] Maŕıa-Cecilia Rivara. Local modification of meshes for adaptive and/or multigrid finite-

element methods. Journal of Computational and Applied Mathematics, 36:79–89, 1991.

[81] K.H. Rosen. Discrete Mathematics and its Applications. McGraw-Hill, fourth edition, 1999.

[82] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, third edition, 1976.

[83] Detlef Ruprecht and Heinrich Müller. A scheme for edge-based adaptive tetrahedron subdivi-

sion. In Hans-Christian Hege and Konrad Polthier, editors, Mathematical Visualization, pages

61–70. Springer-Verlag, Oct 1998.

[84] Hanan Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.

[85] Vladimir V. Savchenko, Alexander A. Pasko, Oleg G. Okunev, and Tosiyasu L. Kunni. Func-

tion representation of solids reconstructed from scattered surface points and contours. Com-

puter Graphics Forum, 14(4):181–188, October 1995.

[86] Robert Schaback. Remarks on meshless local construction of surfaces. In Roberto Cipolla

and Ralph Martin, editors, IMA Conference on the Mathematics of Surfaces IX, pages 34–58.

Springer, 2000.

132

[87] Larry L. Schumaker and Wolfgang Volk. Efficient evaluation of multivariate polynomials.

CAGD, 3(2):149–154, 1986.

[88] J. A. Sethian. Level Set Methods. Cambridge University Press, 1996.

[89] E. G. Sewell. Automatic generation of triangulations for piecewise polynomial approximation.

PhD thesis, Purdue University, 1972.

[90] Evan C. Sherbrooke and Nicholas M. Patrikalakis. Computation of the solutions of nonlinear

polynomial systems. CAGD, 10:379–405, 1993.

[91] Jonathan Richard Shewchuk. Triangle: Engineering a 2D quality mesh generator and de-

launay triangulator. In Ming C. Lin and Dinesh Manocha, editors, Applied Computational

Geometry: Towards Geometric Engineering, volume 1148 of Lecture Notes in Computer Sci-

ence, pages 203–222. Springer-Verlag, May 1996. From the First ACM Workshop on Applied

Computational Geometry.

[92] Jerry Shurman. Geometry of the Quintic. Wiley-Interscience, January 1997.

[93] Robin Sibson. A brief description of natural neighbour interpolation. In Vic Barnett, editor,

Interpreting Multivariate Data, chapter 2, pages 21–36. John Wiley & Sons, 1981.

[94] Robin Sibson and Fraeme D. Thomson. A seamed quadratic element for contouring. The

Computer Journal, 24(4):378–382, 1981.

[95] Ron Sivan and Hanan Samet. Algorithms for constructing quadtree surface maps. In Proceed-

ings of the 5th international symposium on spatial data handling, volume 1, pages 361–370,

Aug 1992.

[96] Michael Spivak. A Comprehensive Introduction to Differential Geometery, volume 1. Publish

or Perish, Inc., second edition, 1979.

[97] Barton Stander and John C. Hart. Guaranteeing the topology of an implicit surface polygo-

nization. In SIGGRAPH 97, pages 279–286, Aug 1997.

[98] Sarah E. Stead. Estimation of gradients from scattered data. Rocky Mountain Journal of

Mathematics, 14(1):265–280, 1984.

[99] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag, second edition,

1993.

[100] John Strain. A fast Semi-Lagrangian contouring method for moving interfaces. Journal of

Computational Physics, 170:373–394, Jun 2001.

[101] United States Geological Survey. Mt. Morgan Quadrangle, California, 7.5 minute series (to-

pographic), 1982.

133

[102] D. Suter. Fast evaluation of radial basis/spline functions: Multipoles without multipoles.

Technical Report MECSE1992-1, Department of Electrical and Computer Systems Engineer-

ing, Monash University, October 1992.

[103] Yen-hsi Richard Tsai. Rapid and accurate computation of the distance function using grids,

2000.

[104] Greg Turk, Huong Quynh Dinh, James O’Brien, and Gary Yngve. Implicit surfaces that

interpolate. In International Conference on Shape Modeling and Applications 2001, pages

62–71, May 2001.

[105] Greg Turk and James O’Brien. Shape transformation using variational implicit functions. In

SIGGRAPH 99, pages 335–342, August 1999.

[106] Brian von Herzen and Alan H. Barr. Accurate triangulations of deformed, intersecting surfaces.

In Proceedings SIGGRAPH 87, pages 103–110. ACM SIGGRAPH, 1987.

[107] Gunther H. Weber, Oliver Kreylos, T.J. Ligocki, J.M. Shalf, Hans Hagen, Bernd Hamann,

and Kenneth I. Joy. Extraction of crack-free isosurfaces from adaptive mesh refinement data.

In D.S. Ebert, J.M. Favre, and R. Peikert, editors, Data Visualization 2001 (Proceedings of

“VisSym ’01”), pages 25–34, Vienna, Austria, 2001. Springer-Verlag.

[108] Rudiger Westermann, Christopher Johnson, and Thomas Ertl. A level-set method for flow

visualization. In IEEE Visualization, pages 147–154, 2000.

[109] Andrew P. Witkin and Paul S. Heckbert. Using particles to sample and control implicit

surfaces. Computer Graphics (Annual Conference Series), 28:269–277, July 1994.

[110] A. J. Worsey and G. Farin. An n-dimensional Clough-Tocher interpolant. Constructive Ap-

proximation, 3:99–110, 1987.

[111] A. J. Worsey and G. Farin. Contouring a bivariate quadratic polynomial over a triangle.

CAGD, 7:337–351, 1990.

[112] A. J. Worsey and B. Piper. A trivariate Powell-Sabin interpolant. CAGD, 5:177–186, 1988.

[113] G. Wyvill, C. McPheeters, and B. Wyvill. Data structures for soft objects. The Visual

Computer, 2(4):227–234, Aug 1986.

[114] Y. Zhou, W. Chen, and Z. Tang. An elaborate ambiguity detection method for constructing

isosurfaces within tetrahedral meshes. Computers & Graphics, 19(3):355–364, 1995.

[115] Yong Zhou, Baoquan Chen, and Arie Kaufman. Multiresolution tetrahedral framework for

visualizing regular volume data. In Proceedings IEEE Visualization 1997, pages 135–142.

IEEE Computer Society, ACM Press, 1997.

